Adding, Multiplying, and Squaring Base Numbers
$n+n=?$
n-n = ?
$n^{2}=?$

Make a prediction about which two expressions in a row will have the same value and what that value will be. Then, perform the operations to check your prediction and complete the last column.

A	B	List the expressions that are Equivalent and write their value	
$4+4$	$4 \cdot 4$	4^{2}	
$2 \cdot 10$	$10+10$	10^{2}	
$16+16$	16^{2}	$2 \cdot 16$	
20^{2}	20×20	$20+20$	
8×8	$8+8$	8^{2}	
$12(12)$	$2 \cdot 12$	12^{2}	
$2(9)$	9^{2}	$9+9$	
$15+15$	$15(15)$	15^{2}	
$30 \cdot 30$	30^{2}	$30+30$	
25^{2}	2×25	$25+25$	

Circle the expression(s) with the greatest value in each problem below.

1. $2 \cdot 19$
$19+19$ 19^{2}
2. $7+7$
7^{2}
7.7
3. $5+5$
$5 \cdot 5$
5^{2}
4. $2+2$
$2 \cdot 2$
2^{2}
5. How was problem \# 4 different than all the other problems on this page? Why is that?
6. True or False: $\boldsymbol{n}^{\mathbf{2}}$ will always be greater than $\boldsymbol{n}+\boldsymbol{n}$? Explain your answer on the back of this page.
