The Power of 0 and 1
Name $\qquad$

Make a prediction about which expression will have the least value by circling one of the three expressions given. Then use the calculator to check your prediction.

1. $0^{1} \quad 1^{0} \quad 1^{1}$
2. 4
$0^{4} \quad 4^{0}$
3. $5^{1} \quad 5^{0} \quad 1^{5}$
4. $8^{1}$
$1^{8}$
$8^{0}$
5. $10^{0}$
$1^{10}$
$10^{1}$

Using your calculator, find the value for the expressions with base 3 and those with base 2. Pay attention to the pattern as the exponent decreases.

| $3^{5}=729$, | $729 \div 3=$ |
| :--- | ---: |
| $3^{4}=243$, | $243 \div 3=--$ |
| $3^{3}=$ | 81, |
| $3^{2}=$ | $27 \div 3=$ |
| $3^{1}=$ | $27 \div 3=$ |
| $3^{0}=$ | 9, |
| $3^{0}$ | $9 \div 3=--$ |

$$
\begin{array}{lr}
2^{6}=128, & 128 \div 2= \\
2^{5}=64, & 64 \div 2= \\
2^{4}= & 32, \\
2^{3}= & 16, \\
2^{2}= & 16 \div 2=- \\
2^{1}= & 4, \\
2^{0}= & 2, \\
\hline & 2 \div 2= \\
& 2 \div-
\end{array}
$$

$3^{1}=\quad 9, \quad 9 \div 3=-$

Use any number as the base to build a pattern of your own

Using the patterns from the problems above, fill in the blanks.
One to any power ( $1^{n}$ ) will always $\qquad$
The value of $n^{1}$ will always $\qquad$
The value of $n^{0}$ will always


