

Make a prediction about which expression will have the **least** value by circling one of the three expressions given. Then use the calculator to check your prediction.

1.	0 ¹	1 ⁰	1 ¹
2.	4 ¹	O^4	4 ⁰
3.	5 ¹	5 ⁰	1 ⁵
4.	8 ¹	1 ⁸	8 ⁰
5.	10 ⁰	1 ¹⁰	10 ¹

Using your calculator, find the value for the expressions with base 3 and those with base 2. Pay attention to the pattern as the exponent decreases.

3 ⁵ =	729,	729 ÷ 3 =	$2^6 = 12^6$	8, 128 ÷ 2 =
3 ⁴ =	243,	243 ÷ 3 =	$2^5 = 6$	4, 64 ÷ 2 =
$3^{3} =$	81,	81 ÷ 3 =	$2^4 = 3$	2, 32 ÷ 2 =
$3^{2} =$	27,	27 ÷ 3 =	$2^3 = 1$	6, 16 ÷ 2 =
3 ¹ =	9,	9 ÷ 3 =	$2^2 =$	8, 8 ÷ 2 =
$3^{0} =$	3,	3 ÷ 3 =	2 ¹ =	4, 4 ÷ 2 =
			2 ⁰ =	2, 2 ÷ 2 =

Use any number as the base to build a pattern of your own

_____÷ ____; _____÷ ____ = ____ $\underline{}^{4} = \underline{}^{\prime}, \quad \underline{}^{\prime} = \underline{}^{\prime},$ ⁻⁻1 = ____, ____ ÷ ____ = ____ _____0 = _____, _____ ÷ ____ = ____

Using the patterns from the problems above, fill in the blanks.

One to any power (1ⁿ) will always _____

The value of n¹ will always _____

The value of n^o will always _____