Rational Numbers with Candy

1) You get $1 / 2$ of some $M \& M$ candies or $1 / 2$ of a candy bar. $1 / 2$ means dividing the candy into \qquad shares, and keeping \qquad share.

Show the shares.
Shade what you Keep.

Shade the grid as if it was a candy bar.

On the grid, you shaded...

Value of your share $\$ 0$. \qquad

Your share is \qquad \% of the candy.
2) You get $3 / 4$ of some $M \& M$ candies or $3 / 4$ of a candy bar.
$3 / 4$ means dividing the candy into \qquad shares, and keeping \qquad share.

Show the shares.
Shade what you keep.

Shade the grid as if it was a candy bar.

On the grid, You shaded....

Value of your share $\$ 0$. \qquad

Your share
is \qquad \% of the candy.
3) You get $1 / 3$ of some $M \& M$ candies or $1 / 3$ of a candy bar. $1 / 3$ means dividing the candy into \qquad shares, and keeping \qquad share.

Show the shares. Shade what you keep.

Color in the grid as if it was a candy bar.

On the grid, you Colored in.....

Value of your share $\$ 0$. \qquad

10ths
100ths 1000ths

Your share is \qquad \% of the candy.
4) Why is shading $1 / 3$ on the grid or $1 / 3$ of the money difficult to show? How will you deal with that problem? \qquad
6) You get $2 / 3$ of some $M \& M$ candies or $2 / 3$ of a candy bar.
$2 / 3$ means dividing the candy into \qquad shares, keeping \qquad shares.

Show the shares.
Shade what you keep.

Color in the grid as if it was a candy bar.

On the grid, you Colored in.....

Value of your share $\$ 0$. \qquad

Your share is \% ------ 1000ths of the candy
7) You get $1 / 5$ of some $M \& M$ candies or $1 / 5$ of a candy bar. $1 / 5$ means dividing the candy into \qquad shares, keeping \qquad shares.

Show the shares.
Shade what you keep.

Color in the grid as if it was a candy bar.

On the grid, you Colored in.....

Value of your share $\$ 0$.

Your share is of the candy
8) Which would be more difficult to shade as a percent of show as a decimal $1 / 10$ or $1 / 8$? Explain your answer.

