1. Read the equation. If the equation involves subtraction, re-write it using a <u>related</u> addition expression. If not, go to step 2. a. $-2x - 4 = 8$ $-2x + _ = 1$ b. $\underline{r} + 2 = 6$ No subtraction here	2. The equation is made of two equivalent expressions. Look for the expression that has the variable in it. Tell what operation(s) have been done to the variable expression. $(+, -, x, \div)$ a. $-2x + (-4) = 8$ was added, and <i>X</i> was multiplied by b. $\underline{r} + 2 = 6$ $\underline{5}$ was added, and r was divided by	3. Begin isolating the variable by adding the opposite number. <i>First</i> <i>undo addition. Remember</i> , to keep balance you must do this with the expression on the left and on the right of =. a. $-2x + (-4) = 8$ -2x = - b. $-r + 2 = 6$ 5 + - + - -5 = -	4. Next, use inverse operations to isolate the variable by <i>undoing any</i> <i>multiplication or division</i> . <i>Remember</i> , to keep balance you must do this with the expression on the left and on the right of =. a. $-2 x = 12$ x = b. $-\frac{r}{5} = 4 \cdot -$ r =	5. When the variable is completely isolated, you have solved the equation. Check: Substitute the value of the variable in the original equation to make sure the two expressions are equal. b. $-2x - 4 = 8$ -2 - 4 = 8 12 - 4 = 8 12 - 4 = 8 c. $r + 2 = 6$ 5 + 2 = 6
1. Read the equation. If the equation involves subtraction, re-write it using a <u>related</u> addition expression. If not, go to step 2. a. $-2x - 4 = 8$ $-2x + _ = 1$ b. $\underline{r} + 2 = 6$ No subtraction here	2. The equation is made of two equivalent expressions. Look for the expression that has the variable in it. Tell what operation(s) have been done to the variable expression. $(+, -, x, \div)$ a. -2x + (-4) = 8 was added, and <i>X</i> was multiplied by b. \underline{r} + 2 = 6 $\underline{5}$ was added, and r was divided by	3. Begin isolating the variable by adding the opposite number. <i>First</i> <i>undo addition. Remember</i> , to keep balance you must do this with the expression on the left and on the right of =. a. $-2x + (-4) = 8$ -2x = - -2x = - b. $r + 2 = 6$ 5 + - + - r = - 5	4. Next, use inverse operations to isolate the variable by <i>undoing any</i> <i>multiplication or division</i> . <i>Remember</i> , to keep balance you must do this with the expression on the left and on the right of =. a. -2 $x = 12$ x = b. $-\cdot \frac{r}{5} = 4 \cdot -$ r =	5. When the variable is completely isolated, you have solved the equation. Check: Substitute the value of the variable in the original equation to make sure the two expressions are equal. b. $-2x - 4 = 8$ -2 - 4 = 8 12 - 4 = 8 12 - 4 = 8 -2 - 4 = 8

		<section-header></section-header>
		<section-header></section-header>

1. Read the	2. The equation is made of	3. Begin isolating the	4. Next, use inverse	5. When the variable
equation. If the equation involves	two equivalent expressions. Look for the	variable by adding the opposite number. <i>First</i>	operations to isolate the variable by <i>undoing any</i>	is completely isolated, you have solved the
subtraction, re-write	expression that has the	undo addition. Remember,	multiplication or division.	equation.
it using a <u>related</u>	variable in it. Tell what	to keep balance you must	<i>Remember</i> , to keep	Check: Substitute the
<i>addition expression.</i> If not, go to step 2.	operation(s) have been done to the variable	do this with the expression on the left and on the right	balance you must do this with the expression on the	value of the variable in the original
	expression. $(+, -, x, \div)$	of =.	left and on the right of =.	equation to make
a2x – 4 = 8	a2x + (-4) = 8	2 - 2x + (4) = 8	a2 <i>x</i> = 12	sure the two
a. $-2x - 4 = 0$ -2x + -4 = 1	a. $-2x + (-4) = 6$ -4 was added, and X	a. $-2x + (-4) = 8$	a2 x = 12	expressions are equal.
	was multiplied by <u>-2</u>		$X = \underline{-6}$	b. $-2x - 4 = 8$
b. <u>r</u> + 2 = 6		-2x = <u>12</u>		$-2 \cdot \underline{-6} - 4 = 8$ 12 - 4 = 8
5	b. <u>r</u> + 2 = 6		b. <u>5</u> • <u>r</u> = 4 • <u>5</u>	12 - 4 - 0
No subtraction here	5	b. $r + 2 = 6$	5	c. <u>r</u> + 2 = 6
	<u>2</u> was added, and r was divided by <u>5</u>	5 + -2 + -2 <u>r</u> = <u>4</u>	r = <u>20</u>	5 20 + 2 = 6
		5		$\frac{20}{5}$ + 2 = 6