\qquad

1. How many square units would be needed to build a square with 8 -inch sides? With 10 -inch sides?
2. What would the length of the square's side (the square root) have to be if there were 49 square units in the area?
3. Explain how a square root is related to the square of that root.
4. How many cubes would be needed to build a cube with a height of 3 units?
5. What would the height of a cube be if there were 125 cubic units in the cube?

Name the base and the exponent in each of the following exponential expressions:
6. 4^{2}; base ____ exponent ____
7. 5^{3}; base \qquad exponent \qquad
8. 6^{0}; base ___ exponent
9. 2^{1}; base ___ exponent

Rewrite each of the following expressions as a product of factors. The first one has been done for you.
10. $4^{3}=4 \times 4 \times 4$
11. $7^{2}=$
12. $6^{0}=$
13. $\mathbf{8}^{\mathbf{1}}=$

Evaluate each of the following expressions

14. $4^{3}=$
15. $7^{2}=$
16. $6^{0}=$
17. $8^{1}=$

Rewrite each of the following expressions using a base and an exponent, then find the value. Ex: $6 \times 6 \times 6=6^{3}=216$
18. $3 \cdot 3 \cdot 3 \cdot 3$
19. $5 \times 5 \times 5$
20. (9)(9)
21. $1 \bullet 1 \bullet 1 \bullet 1 \bullet 1$

Rewrite each expression using exponential form
22. $a \cdot a \cdot a$
23. mmmmm
24. $2 \cdot 2 \cdot 2 \cdot 2(\mathrm{kkk})$
25. 1

Use the calculator to find the value for each
26. 5^{-2}
27. 3^{-3}
28. 10^{-4}
29. 100^{-1}
28. Describe how your thinking about exponential expressions has changed during this lesson. Include what you understand better or what you now know that you didn't know before.

