I nvestigating Similar
 Figures, Scale Factors and Volume With Linking Cubes

Name
Date \qquad
 similar prisms for each problem. Count the volume (cubes) for each. Fill in the blanks.
Use linking cubes to build the two

1. Build a cube with side length of 1 . Sketch it here.

Build a similar figure using a scale factor of 2. Sketch it here.

Volume of smaller cube \qquad . Volume of larger cube \qquad .

What is the value of the scale factor ${ }^{3}$? \qquad .
What is the ratio of the larger cube's volume to the smaller cube's volume \qquad .
2. Build a cube with side length of 2. Sketch it here.

Build a similar figure using a scale factor of 2. Sketch it here.

Volume of smaller cube \qquad . Volume of larger cube \qquad .

What is the value of the scale factor ${ }^{3}$? \qquad .
What is the ratio of the larger cube's volume to the smaller cube's volume \qquad -.
3. Build a prism with dimensions $\mathrm{I}=1, \mathrm{w}=2, \mathrm{~h}=2$. Sketch it here.

Build a similar figure using a scale factor of 2. Sketch it here.
Volume of smaller prism \qquad . Volume of larger prism \qquad .

What is the value of the scale factor ${ }^{3}$? \qquad .
What is the ratio of the larger prism's volume to the smaller prism's volume \qquad .
4. Build a cube with side length of 1 .

Build a similar figure using a scale factor of 3. Sketch it here.

Volume of smaller cube \qquad . Volume of larger cube \qquad .

What is the value of the scale factor ${ }^{3}$? \qquad _.
What is the ratio of the larger cube's volume to the smaller cube's volume \qquad _.
5. Build a cube with side length of 2. Sketch it here.

Build a similar figure using a scale factor of 3. Sketch it here.

Volume of smaller cube \qquad . Volume of larger cube \qquad .

What is the value of the scale factor ${ }^{3}$? \qquad _.
What is the ratio of the larger cube's volume to the smaller cube's volume \qquad .
6. Build a prism with dimensions $\mathrm{I}=1, \mathrm{w}=2, \mathrm{~h}=2$. Sketch it here.

Build a similar figure using a scale factor of 3. Sketch it here.
Volume of smaller prism \qquad . Volume of larger prism \qquad .

What is the value of the scale factor ${ }^{3}$? \qquad .
What is the ratio of the larger prism's volume to the smaller prism's volume \qquad .
7. How does the scale factor compare to the ratio of the volumes?
8. If you build two similar cubes with a scale factor of 4, what would you expect the ratio of their volumes to be? Explain your answer.

