Zoological Philosophy

Jean Lamarck (1809)

The environment affects the shape and organization of animals, that is to say that when the environment becomes very different, it produces in course of time corresponding modifications in the shape and organization of animals.

If a new environment, which has become permanent for some race of animals, induces new habits in these animals, that is to say, leads them into new activities which become habitual, the result will be the use of some one part in preference to some other part, and in some cases the total disuse of some part no longer necessary.

Nothing of all this can be considered as hypothesis or private opinion; on the contrary, they are truths which, in order to be made clear, only require attention and the observation of facts.

Snakes have adopted the habit of crawling on the ground and hiding in the grass; so that their body, as a result of continually repeated efforts at elongation for the purpose of passing through narrow spaces, has acquired a considerable length, quite out of proportion to its size. Now, legs would have been quite useless to these animals and consequently unused. Long legs would have interfered with their need of crawling, and very short legs would have been incapable of moving their body, since they could only have had four. The disuse of these parts thus became permanent in the various races of these animals, and resulted in the complete disappearance of these same parts, although legs really belong to the plan or organization of the animals of this class.

The frequent use of any organ, when confirmed by habit, increases the functions of that organ, leads to its development, and endows it with a size and power that it does not possess in animals which exercise it less.

We have seen that the disuse of any organ modifies, reduces, and finally extinguishes it. I shall now prove that the constant use of any organ, accompanied by efforts to get the most out of it, strengthens and enlarges that organ, or creates new ones to carry on the functions that have become necessary.

The bird which is drawn to the water by its need of finding there the prey on which it lives, separates the digits of its feet in trying to strike the water and move about on the surface. The skin which unites these digits at their base acquires the habit of being stretched by these continually repeated separations of the digits; thus in course of time there are formed large webs which unite the digits of ducks, geese, etc. as we actually find them.

It is interesting to observe the result of habit in the peculiar shape and size of the giraffe; this animal, the largest of the mammals, is known to live in the interior of Africa in places where the soil is nearly always arid and barren, so that it is obliged to browse on the leaves of trees and to make constant efforts to reach them. From this habit long maintained in all its race, it has resulted that the animal's fore-legs have become longer than its hind legs, and that its neck is lengthened to such a degree that the giraffe, without standing up on its hind legs, attains a height of six metres (nearly twenty feet).

Philosophie Zoologique. Paris. 1809.

On the Tendency of Varieties to Depart Indefinitely from the Original Type Alfred Russel Wallace (1858)

The Struggle for Existence

The life of wild animals is a struggle for existence. The full exertion of all their faculties and all their energies is required to preserve their own existence and provide for that of their infant offspring. The possibility of procuring food during the least favorable seasons and of escaping the attacks of their most dangerous enemies are the primary conditions which determine the existence both of individuals and of entire species. The numbers that die annually must be immense; and as the individual existence of each animal depends upon itself, those that die must be the weakest—the very young, the aged, and the diseased—while those that prolong their existence can only be the most perfect in health and vigor, those who are best able to obtain food regularly and avoid their numerous enemies. It is "a struggle for existence," in which the weakest and least perfectly organized must always succumb.

Useful Variations Will Tend to Increase, Unuseful or Hurtful Variations to Diminish

Most or perhaps all the variations from the typical form of a species must have some definite effect, however slight, on the habits or capacities of the individuals. Even a change of color might, by rendering them more or less distinguishable, affect their safety; a greater or less development of hair might modify their habits. More important changes, such as an increase in the power or dimensions of the limbs or any of the external organs, would more or less affect their mode of procuring food or the range of country which they could inhabit. It is also evident that most changes would affect, either favorable or adversely, the powers of prolonging existence. An antelope with shorter or weaker legs must necessarily suffer more from the attacks of the feline carnivora; the passenger pigeon with less powerful wings would sooner or later be affected in its powers of procuring a regular supply of food; and in both cases the result must necessarily be a diminution of the population of the modified species. If, on the other hand, any species should produce a variety having slightly increased powers of preserving existence, that variety must inevitably in time acquire a superiority in numbers.

Lamarck's Hypothesis Very Different from that Now Advanced

The hypothesis of Lamarck—that progressive changes in species have been produced by the attempts of animals to increase the development of their own organs and thus modify their structure and habits—has been repeatedly and easily refuted by all writers on the subject of varieties and species. The giraffe did not acquire its long neck by desiring to reach the foliage of the more lofty shrubs and constantly stretching its neck for the purpose, but because any varieties which occurred among its ancestors with a longer neck than usual at once secured a fresh range of pasture over the same ground as their shorternecked companions, and on the first scarcity of food were thereby enabled to outlive them.

On the Origin of Species

Charles Darwin (1859)

Introduction

When on board H.M.S. *Beagle*, as naturalist, I was much struck with certain facts in the distribution of the inhabitants of South America, and in the geological relations of the present to the past inhabitants of that continent. These facts seemed to me to throw some light on the origin of species—that mystery of mysteries, as it has been called by one of our greatest philosophers. On my return home, it occurred to me, in 1837, that something might perhaps be made out on this question by patiently accumulating and reflecting on all sorts of facts which could possibly have any bearing on it. After five years work I allowed myself to speculate on the subject, and drew up some short notes; these I enlarged in 1844 into a sketch of the conclusions, which then seemed to me probable; from that period to the present day I have steadily pursued the same object. I hope that I may be excused for entering on these personal details, as I give them to show that I have not been hasty in coming to a decision.

My work is now nearly finished; but as it will take me two or three more years to complete it, and as my health is far from strong, I have been urged to publish this Abstract. I have more especially been induced to do this, as Mr. Wallace, who is now studying the natural history of the Malay archipelago, has arrived at almost exactly the same general conclusions that I have on the origin of species. Last year he sent to me a memoir on this subject, with a request that I would forward it to Sir Charles Lyell, who sent it to the Linnean Society, and it is published in the third volume of the Journal of that Society. Sir C. Lyell and Dr. Hooker, who both knew of my work—the latter having read my sketch of 1844—honoured me by thinking it advisable to publish, with Mr. Wallace's excellent memoir, some brief extracts from my manuscripts.

In considering the Origin of Species, it is quite conceivable that a naturalist, reflecting on the mutual affinities of organic beings, on their embryological relations, their geographical distribution, geological succession, and other such facts, might come to the conclusion that each species had not been independently created, but had descended, like varieties, from other species. Nevertheless, such a conclusion, even if well founded, would be unsatisfactory, until it could be shown how the innumerable species inhabiting this world have been modified, so as to acquire that perfection of structure and coadaptation which most justly excites our admiration. Naturalists continually refer to external conditions, such as climate, food, etc., as the only possible cause of variation. In one very limited sense, as we shall hereafter see, this may be true; but it is preposterous to attribute to mere external conditions, the structure, for instance, of the woodpecker, with its feet, tail, beak, and tongue, so admirable adapted to catch insects under the bark of trees. In the case of the misseltoe, which draws its nourishment from certain trees, which has seeds that must be transported by certain birds, and which has flowers with separate sexes absolutely requiring the agency of certain insects to bring pollen from one flower to the other, it is equally preposterous to account for the structure of this parasite, with its

relations to several distinct organic beings, by the effects of external conditions, or of habit, or of the volition of the plant itself.

The author of the 'Vestiges of Creation' would, I presume, say that, after a certain unknown number of generations, some bird had given birth to a woodpecker, and some plant to the misseltoe, and that these had been produced perfect as we now see them; but this assumption seems to me to be no explanation, for it leaves the case of the coadaptations of organic beings to each other and to their physical condition of life, untouched and unexplained.

It is, therefore, of the highest importance to gain a clear insight into the means of modification and coadaptation. At the commencement of my observations it seemed to me probable that a careful study of domesticated animals and of cultivated plants would offer the best chance of making out this obscure problem. Nor have I been disappointed; in this and in all other perplexing cases I have invariable found that our knowledge, imperfect though it be, of variation under domestication, afforded the best and safest clue. I may venture to express my conviction of the high value of such studies, although they have been very commonly neglected by naturalists.

No one ought to feel surprise at much remaining as yet unexplained in regard to the origin of species and varieties, if he makes due allowance for our profound ignorance in regard to the mutual relations of all the beings which live around us. Who can explain why one species ranges widely and is very numerous, and why another allied species has a narrow range and is rare? Yet these relations are of the highest importance, for they determine the present welfare, and, as I believe, the future success and modification of every inhabitant of this world. Still less do we know of the mutual relations of the innumerable inhabitants of the world during the many past geological epochs in its history. Although much remains obscure, and will long remain obscure, I can entertain no doubt, after the most deliberate study and dispassionate judgment of which I am capable, that the view which most naturalists entertain, and which I formerly entertained—namely, that each species has been independently created—is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varieties of any one species are the descendants of that species. Furthermore, I am convinced that Natural Selection has been the main but not exclusive means of modification.

On the Origin of Species by Means of Natural Selection. London. 1859.