Name: _____ Date: _____

Basic research is when I'm doing what I don't know what I'm doing. --Werner von Braun

Title: Factors Affecting Reaction Rates

Introduction: In this lab you will investigate factors that may effect the rate of a reaction. As you go through this lab activity, you might find it useful to keep in mind the two main concepts of collision theory:

- 1. collisions must occur if a reaction is to take place,
- 2. not all collisions result in reactions.

For example, when you are exploring the role of concentration on reaction rate, ask yourself: "how would changing the concentration have an effect on the number of collisions that lead to a successful chemical reaction"? Try to interpret your results always in terms of effect on successful collisions.

Materials:

You will be provided with the following materials:

- 1. acidified 0.4 M Na₂C₂O₄ (sodium oxalate)
- 2. acidified 0.1 M FeSO₄
- 3. 0.02 M KMnO₄
- 4. 0.01 M MnCl₂
- 5. set of 6 small test tubes
- 6 distilled water
- 7. stopwatch
- 8. heat source

Note: "acidified means that the solution contains also 1 M H₂SO₄ (aq). The reaction won't occur unless there are some H^+ ions around.

Day 1

1. Compare the rates of reaction for FeSO₄ with KMnO₄.

- Set up three test tubes with 10 drops of the iron(II) solution (this should be enough to make a small pool of reagents at the bottom of your test tubes).
- Add a drop of KMnO₄, and time the reaction. You will know it is over when the purple color is gone. Take an average of your results. (Hint: the disappearance in color is probably most easily seen if compared to a white background!!) Record your data.
- 2. Repeat the process with Na₂C₂O₄ with KMnO₄
- 3. These tests represent your **control** rates.
- 4. With your group, design an experiment to test one variable that you think may affect the reaction rates of both reactions. Use the scoring guide to help design the experiment.
- 5. What is the question or problem you will address?

- 6. What is the variable you will test?
- 7. Describe the steps you will take.
 - a.
 - b.
 - c.
 - 0.
 - d.
 - ...
 - e.
 - f.

Hypothesis:

Data:

Trial				
Trial	1	2	3	Average
Control:				
FeSO ₄ with KMnO _{4.}				
Na ₂ C ₂ O ₄ with KMnO ₄				
Experiment:				
FeSO ₄ with KMnO _{4.}				
Na ₂ C ₂ O ₄ with KMnO ₄				

Analysis

- 1. What did your experiment show about reaction rates?
- 2. How does collision theory explain your results?
- 3. Explain the difference between the undiluted and diluted solutions in relation to collision theory.

- 4. Explain the difference between the room temperature and heated reactions in relation to collision theory.
- 5. What were sources of error in the experiments?
- 6. What would you do differently next time?

7. Substances which increase the rate of a reaction without being consumed are known as catalysts. In the oxalate/permanganate system, Mn²⁺ acts as an auto catalyst (i.e., it is a product which catalyzes its own reaction). What experimental evidence is there that Mn²⁺ is a catalyst for this reaction system?

8. The "nature of the reactants" is often given as one factor that affects the rate of a chemical process. In both of these reactions, MnO_4^- is converted to Mn^{2^+} . But the oxidations are very different. In one case Fe^{2^+} is converted to Fe^{3^+} . In the other case $C_2O_4^{2^-}$ is converted to CO_2 gas. In light of collision theory suggest a reason for the difference in the observed rates of these two processes.

Conclusion: