

Summary: This activity will aid in the understanding of breaking a single object into equal shares using candy and other exciting models. Students will learn about fractions and how they can make all different kinds fractions with even more fractions.
Materials: Invitation to Learn
Instructional Procedures
Attachments
Web Sites
 Fraction Bars
Interactive lessons and explorations and information about fraction bars for students, teachers, and people of all ages in mathematics and science.
 Musical Fraction Bars
The Musical Fraction Bars activity connects your knowledge of fractions and length to ... How to play Musical Fraction Bars: Scroll down until you see the ...
Background For Teachers: This exploration is best done following a class discussion lead by
the teacher of what a fraction is and what it really represents. Often
time students are intimidated with the concept of fractions. Have them
relax and just think of the fraction as another way to write or express
a division equation. Mathematicians are known to be very “efficient”
folks and seem to always find the most efficient way to write, express,
and communicate things quickly. They are always anxious to move
on and get the job done. Show the students the ÷ symbol. Do you see
the fraction model in this symbol? The line means to “share equally.”
The denominator is the number of shares. Students relate to sharing
with friends, so you might refer to the denominator as, “how many
friends you will be sharing with?” The numerator is the portion of the
shares to be considered. You can actually cover that number of shares
with your hand to give the students an action cue to depend on. The
following exploration and experience with the manipulatives is to as
much uncover what the students know as much as to allow them to
discover!
Instructional Procedures: Invitation to Learn
Provide each group of four to five students with a single licorice
rope. Ask them to share this one licorice rope with the group
“equally.” Don’t allow them to eat the shares until you have a chance
to talk as a class. This activity will only take a few minutes. Children
share everyday, all day long, so they will jump right in and get busy
sharing. Travel among the groups and listen for snippets or phrases
being said during the sharing. Pull the class together and share
things you heard and go right into a discussion of “sharing equally.”
Depending on the responses and your assessment of understanding
you might need to “share” more objects on the overhead with the class.
Then share the traditional fraction model. Discussing and clarifying as
needed. Let them eat!
Instructional Procedures
 Provide single manipulative sets on a table or area where
students have access: fraction circles, fraction pieces, pattern
blocks, fraction bars, 12centimeter cubes, yard stick, ruler, egg
carton, Cake worksheet, number line 01, and Clock worksheet.
These are suggestions only. You can pare down the choices or
add others depending on the degree of challenge you wish to
deal with and availability.
 Challenge the students to show, model, and name as many
equal shares of the tool, object, or manipulative being used.
 Invite the individual groups to pick the manipulative of their
choice.
 Circulate among the groups and assess knowledge level,
vocabulary being used, and progress. Allow about ten minutes
for group members to interact on the task.
 Then suggest to the class the use of a graphic organizer, Can You
Make?, to help record findings.
 Some explanation of how the Can You Make? graphic organizer
is set up and its use may be needed and this usually works itself
out if you take a manipulative and start working through an
example on the overhead.
 Students continue working and complete organizer to twelfths.
There is value in the sketching of the manipulative pieces
and a few groups may be confronted with having to construct
sevenths, ninths, and elevenths. Provide construction paper of
colors not represented in manipulative pieces.
 Groups will then present findings to the total class. This will
give an opportunity for you to discuss proper vocabulary in
depth and clear up misconceptions that might have come up.
This is a rich exploration. Students access prior knowledge,
organize findings, organize patterns, interpret patterns,
identify equivalents, process proportions, use estimation, order
relationships of fractions to the whole, and make connections to
other concepts in mathematics.
 Have groups record the patterns that developed as they
filled in the graphic organizer. Do this in traditional fraction
representation.
 Discuss and write equivalent fractions on a chart, overhead or
chalkboard as they are shared.
 In their math journal or on the bottom of the Can You Make?
graphic organizer have them write: What I learned or discovered
from this experience?
Strategies For Diverse Learners:
 An extension for advanced learners would be the worksheet,
Share Equally and/or If This Is...?
 Adaptations for learners with special needs or as a reteaching
activity for a smaller group is the Matching Bars Game.
 Place the fraction bar set of 16 pieces face down in the center
of the group. Arrange them in equal rows and columns.
 To determine which player goes first: each player picks one
of the face down bars. The player with the greatest amount
shaded goes first. Replace the bars face down.
 Now take turns turning over two bars per turn that have the
same shaded amount. If the shaded amounts are the same, he
keeps the bars and goes again.
 If the two bars do not have the same amount shaded, they are
turned over again and the next student takes a turn.
 Play continues until all the bars have been matched. The
student with the most matching bars wins.
 Another adaptation for those needing further practice in linear
and length models is the folding activity Big Inch.
 Pretend that the paper is going to be an inch magnified.
 Fold the paper in half end to end.
 How many sections do you have?
 Draw a line along the fold about three inches long.
 Write ½ under that line.
 Now fold the paper in half again.
 How many sections do you have?
 Draw a shorter line on each fold.
 Write 1/4 under the first line, 2/4 on the second line, and 3/4
on the last fold line that was created.
 Now fold the paper in half again.
 How many sections do you have now?
 Fill in the numbers on the folds created.
 Now fold the paper in half again.
 How many sections?
 Fill in the numbers on the folds created.
 Discuss the experience and allow students to measure with
their Big Inch.
 Take the pattern blocks and change the unit whole. For
example: two yellow hexagons equal one. What would be the
value of the other pieces?
 Have students create a design with pattern blocks. What is the
design’s value if the unit whole is the green triangle?
Extensions: Family Connections
Home Fraction Hunt:
 What are the most common fractions found in the home?
 Where are most of the fractions found in your home??
Assessment Plan:
 A performance assessment is built into the completion of Can
You Make? graphic organizer.
 Observation and interview of the experience.
 Journal writing of students reflection on the experience.
Bibliography:
Zull, J.E. (2004). The art of changing the brain. Educational leadership. September 2004
This article explores the fact that learning should feel good. When
a student is experiencing, exploring, developing connections, and
learning then positive emotions are generated. This biochemical
reward of learning is not provided by explanations from the teacher, but by the student developing their own idea and ownership of
those ideas. It goes on to discuss that the way we feel always
influences our brain and strengthens growth and wiring. The article
shares some best practices for teachers to optimize learning in the
classroom.
De Geest, E., & Watson, A., (2004). Instilling Thinking. Mathematics Teaching. June 2004.
This article shares research done to identify and develop ways of
stimulate mathematical thinking. It explores the common practice of
giving students in the lowest achieving group repetitive, simplified
mathematics. When studies show that more good is done helping
learners develop thinking skills and understanding throughout every
level of mathematics lessons. This with a teachers high expectations
help a student’s selfawareness that they are learning and progressing.
Students showed significant gains in selfesteem and their ability and
willingness to engage with extended, unfamiliar, and complex tasks.
Author: Utah LessonPlans
Created Date : Jul 11 2007 08:20 AM
