Nitrogen Cycle - Stream Side Science

Summary

Students will learn about the nitrogen cycle through discussion and the construction of a diagram. They will also measure the nitrate levels in various water samples and discuss how humans affect nitrate content in the water.

Time Frame

1 class periods of 60 minutes each

Materials

Nitrate kits* Copies of <u>nitrate sampling instruction sheets</u> (pdf) Waste bottles Clip boards Pencils Plastic water bottles for collecting samples

* For information on equipment for loan or for purchase, contact USU Water Quality Extension at (435) 797-2580 or <u>www.extension.usu.edu/waterquality</u>

Background for Teachers

Purpose

To diagram the nitrogen cycle and provide examples of human actions that affect this cycle. Background

Nitrogen is all around us and is found in a variety of forms throughout the global environment. The nitrogen cycle demonstrates the many different paths nitrogen may follow around our earth and the different reservoirs in which nitrogen is stored.

Although nitrogen gas (N 2) is an important component of proteins for both plants and animals, most plants cannot use the nitrogen gas directly. The process of converting nitrogen to a "biologically available" form -- in other words, converting nitrogen gas to a form that plants can use - is called nitrogen fixation. Only specialized bacteria in soil and certain types of algae in water can fix nitrogen. Lightning strikes also result in some nitrogen fixation.

Human activities have had a huge impact on global nitrogen cycles. The amount of biologically available nitrogen generated by human activities now far exceeds nitrogen fixed by bacteria, algae and lightning. Humans produce synthetic fertilizers, burn fossil fuels, grow legumes (which fix nitrogen) as a crop, and engage in various land clearing, burning and wetland draining activities, which all release nitrogen in forms that plants use. See the table on the Teacher Resource page for more details on the amount of fixed nitrogen humans produce.

See the <u>Utah Stream Team Manual</u> or the Further Discussion questions to learn more about the nitrogen cycle and how humans have affected it.

Intended Learning Outcomes

Use Science Process and Thinking Skills

Observe objects, events and patterns and record both qualitative and quantitative information.

Use comparisons to help understand observations and phenomena.

Evaluate, sort, and sequence data according to given criteria.

Select and use appropriate technological instruments to collect and analyze data.

Plan and conduct experiments in which students may:

Identify a problem.

Formulate research questions and hypotheses.

Predict results of investigations based upon prior data.

Identify variables and describe the relationships between them.

Plan procedures to control independent variables.

Collect data on the dependent variable(s).

Select the appropriate format (e.g., graph, chart, diagram) and use it to summarize the data obtained.

Analyze data, check it for accuracy and construct reasonable conclusions. Prepare written and oral reports of investigations.

Construct models, simulations and metaphors to describe and explain natural phenomena. Manifest Scientific Attitudes and Interests

Raise questions about objects, events and processes that can be answered through scientific investigation.

Demonstrate Understanding of Science Concepts, Principles and Systems

Know and explain science information specified for the subject being studied.

Apply principles and concepts of science to explain various phenomena.

Communicate Effectively Using Science Language and Reasoning

Provide relevant data to support their inferences and conclusions.

Use precise scientific language in oral and written communication.

Use proper English in oral and written reports.

Use reference sources to obtain information and cite the sources.

Use mathematical language and reasoning to communicate information.

Instructional Procedures

Classroom Activity:

Part One

Discuss the nitrogen cycle with your students

Ask them to identify where nitrogen is found. Talk about how nitrogen is found in many different forms, both organic and inorganic.

Ask the students what the most common inorganic form is (*nitrogen gas, which makes up 80% of the atmosphere*).

Ask students where organic nitrogen might be found (*plants and animals and dead material -- nitrogen is used in proteins*).

Ask the students what type of nitrogen most plants can use (*nitrate or ammonia -- two common forms of inorganic nitrogen*). Point out that only a few very specialized plants and microorganisms can use nitrogen gas directly. All other plants use nitrogen in the form of nitrate or ammonia.

As the students talk about forms of nitrogen. Draw a nitrogen cycle on the board, adding reservoirs and process lines as the students suggest them (see example on the Teacher Resource page).

Part Two

Explain to the students that they will measure one type of nitrogen found in water - nitrate. Nitrate is a common form of inorganic nitrogen that is easily used by plants.

Provide water samples from different sources. Groundwater, surface water, or water from a fish tank are all good sources.

Divide students into groups of no more than six so that everyone can be involved.

Give each group a water sample. Have the groups follow the directions found on the nitrate

sampling sheet.

Have students record their results on the board and discuss why different sources of water have different concentrations.

Explain that nitrate is extremely soluble and moves into our groundwater easily. Explain that in surface waters, the nitrate is used up rapidly by aquatic plants.

Part Three

Return to the drawing of the nitrogen cycle from your earlier discussion, or use the cycle in this lesson as a guide. Ask the students to suggest ways that humans may have affected the nitrogen cycle.

Discuss their answers. Be sure to mention the points below.

Inorganic Fertilizers - fertilizers have been produced commercially since the 1950's and now account for 80 tg of fixed nitrogen entering the global environment every year. (Note: 1 tg (terragram) is equal to 1 million metric tons)

Feedlots introduce a lot of ammonia into the air.

Fossil fuel combustion (cars and coal burning energy plants) convert nitrogen gas into nitric and nitrous oxides, which are dissolved into rainwater and fall as nitric acid. This is not only a source of acid rain, but also nitorgen fertilizer.

Further Discussion:

- 1. Discuss the following terms with your students. Be sure they understand how these relate to the nitrogen cycle.
 - Microorganisms are extremely important in converting nitrogen from one form to another.
 - Nitrification is the transformation of ammonia to nitrite and finally to nitrate. This usually happens by microorganisms in conditions with plenty of oxygen.
 - Denitrification by a different group of microorganisms is the transformation of nitrate to nitrite and finally to nitrogen gas.
 - Nitrogen fixation is the conversion of nitrogen gas to nitrate or ammonia, and occurs when there's little or no free oxygen in the environment (e.g., in the sediments at the bottom of a lake).
- 2. What form of nitrogen is measured in the water test?

This test measures the nitrate (NO 3) + nitrite (NO 2) concentration in the water, but we generally refer to the results as nitrate only, because nitrite concentrations are usually extremely low in surface waters. Nitrate is one of the two common forms of inorganic nitrogen found in water, and is readily used by plants. The other form, ammonia, is less common in unpolluted surface water.

The nitrate test has two steps. The first step is to shake the water sample with a small amount of ground cadmium. This "strips away" one oxygen atom from the nitrate molecule, converting everything to nitrite. The second step is a color test designed to analyze for nitrite concentrations. The intensity of the pink color is proportional to the amount of nitrite.

3. What are the impacts of the large amounts of biologically available nitrogen released by human activities?

Nitrogen in such abundance has many impacts.

- Over-fertilization of lakes and estuaries is called eutrophication. Runoff of synthetic fertilizers, runoff from feed lots, runoff from drained wetlands, burned areas, and atmospheric deposition all contribute to this problem. The nitrogen stimulates excessive plant growth. The plants eventually die and decompose, which can use up all the dissolved

oxygen in the water. This kills fish in lakes, and has also produced an area the size of Massachusetts on the floor of the Gulf of Mexico that is a "dead zone"... no oxygen left so nothing else can live there.

- Burning of fossil fuels creates nitric and nitrous oxide as a byproduct in the atmosphere. This falls to earth as nitric acid, a strong acid that can cause acidification of lakes, especially in areas where soils are not well buffered. Heavy nitrogen deposition on soils can acidify the soils, which damages terrestrial ecosystems. They are also a source of fertilizer.
- Combustion engines also convert nitrogen gas to nitrous oxide, which is a greenhouse gas (traps heat and contributes to global warming).
- Nitrogen can be directly toxic to humans and animals as well. Drinking water nitrate concentrations above 10 ppm (mg/l) cause blue baby syndrome and ammonia at much lower concentrations can be toxic to fish.

Bibliography

Lesson plan authors: Andree Walker and Nancy Mesner (Utah State University Water Quality Extension)

This curriculum was made possible through funding from the Environmental Protection Agency, the United States Department of Agriculture, Cooperative State Research, Education, and Extension Service, the Utah Division of Wildlife Resources, and Utah State University Extension. Additional resources can be found on the <u>USU Stream Side Science 9th Grade Curriculum web page</u>.

Authors

Ellen Bailey Andree Walker