CMaP PROJECT

Project Title: 2010: JORDAN RIVER WATER QUALITY Created by: Tamara Aho Class: UEN CMaP 2010

I	Ducient Decemination	Teach Crade Dieless Clease Te man semaling sites, and graph water quality.
	Floject Description	Tentil Orace Biology Class. To map sampling sites, and graph water quality
		analysis values for students to analyze changes in water quality from 2005
		to 2010 along the Jordan river between 4800 South and 123000 South.
		Students will obtain and analyze three samples of water from at least three
		of the following locations: 4800 South, 5400 South, 7800 South and 12300
		South. Using a GPS, students will record waypoints for each of the samples
		taken. Using water testing kits students will test the following values:
		levels of dissolved oxygen, phosphorous, nitrogen, pH, turbidity, and
		temperature Next students using Arcview will select a man overlay
		appropriate imagery import GPS waypoint data and produce a graphic
		depicting 2010 water sampling sites along the Jordan River with a graph
		displaying the various water guality values
	Community Iggue or	The Jorden Diver was identified as nollyted in 1078 and a goal to alean it up
	Drahlam Salastad	The Jordan Kivel was identified as polluted in 1978 and a goal to clean it up
	Problem Selected	by 2010 has been formed. The purpose of the above project is to introduce
	-How project	students to water quality analysis as part of an overall ecology unit. Ideally
	evolved?	students will collect samples from points identified above and produce a
		comparison graph of specific water values to demonstrate changes from
		2005 data (to be supplied to the students) to illustrate changes in values (if
		there are any) and determine if a significant improvement of water quality
		has been achieved.
	Community	Utah State University Water Quality Extension
	Partner(s)	Jordan River Conservancy
	Project Objectives	Students will learn:
		proper water sampling techniques and an understanding of water
		value implications
		An introduction to water quality and its effect on neighboring
		habitats and ecosystems
		\square How to obtain waypoints on a GPS
		\square An overview of ARCVIEW and manning possibilities
		Recording observations on a data table graphing and charting of data to
		demonstrate relevance
	Utah Core	
	Standards/Objectives	II O: 1 Use Science Process and Thinking Skills
	Standards/Objectives	a Observe objects, events and natterns and record both qualitative and
		quantitative information
		b Use comparisons to help understand observations and phenomena
		c. Evaluate sort and sequence data according to given criteria
		d. Select and use appropriate technological instruments to collect and
		analyze data.
		e. Plan and conduct experiments in which students may:

	• Identify a problem.
	• Formulate research questions and hypotheses.
	• Predict results of investigations based upon prior data.
	• Identify variables and describe the relationships between them.
	• Plan procedures to control independent variables.
	 Collect data on the dependent variable(s)
	• Select the appropriate format (e.g. graph chart diagram) and use it
	to summarize the data obtained.
	Analyze data, check it for accuracy and construct reasonable
	conclusions.
	• Prepare written and oral reports of investigations.
	STD 1.
	Objective 2: Explain relationships between matter cycles and organisms
	a Objective 2: Explain relationships between matter cycles and organisms
	b Use diagrams to trace the movement of matter through a cycle (i.e., carbon
	oxygen nitrogen water) in a variety of biological communities and ecosystems
	c Explain how water is a limiting factor in various ecosystems
	d Evaluate the impact of personal choices in relation to the cycling of matter
	within an ecosystem (e.g. impact of automobiles on the carbon cycle
	impact on landfills of processed and packaged foods)
	Objective 3: Describe how interactions among organisms and their environment
	help shape ecosystems.
	a. Use data to interpret interactions among biotic and abiotic factors (e.g., pH.
	temperature, precipitation, populations, diversity) within an ecosystem.
	b. Investigate an ecosystem using methods of science to gather quantitative and
	qualitative data that describe the ecosystem in detail.
	c. Research and evaluate local and global practices that affect ecosystems.
Essential Ouestion(s)	How do nutrients such as oxygen, nitrogen and carbon cycle through an
-Spatial Issue	aquatic ecosystem?
	What impact does human activity in and around a specific ecosystem
	influence these nutrient cycles?
Assossments	Assessment will be formative and summative in nature with individual
Assessments	Assessment will be formative and summative in flature – with individual
(Tublics, scoring	observations as students conect data and produce then graphs and mapping
guides)	products. A summative evaluation will be conducted on each student s
	finished product evaluated against a basic map elements checklist rubric.
Project Products	Basic Map depicting all items on the rubric, and a one-page write up of the
	significance of the results
Project Timeline	Work with technology or earth science instructor to see if GPS or ArcMap
(include a step by	software may be covered in either of their courses.
step Procedures)	
1	If not, this will have to be a end of year (post CRT) project
	Week One: Overview on GPS and basic ArcMan Software familiarity
	Week Two and Three: Field trin to obtain water samples and test various
	water quality values. Production of labeled and annotated graphic with
	water quarty values. Froutetion of rabeled and annotated graphic with
	embedded graph illustrating the student's data and other rubric items. One
	page analysis of results

Resources Needed	Three or four GPS receivers, digital cameras, laptops with ArcMap software installed, two to three water testing kits (check USU Water Quality Extension for some loaner kits)
Skills Required	Basic computer skills, attention to detail, recording and graphing data
Project Team	Teacher(s): Biology, Computer Tech and possibly Earth Science
Member Roles	
	Students: 10 th grade Biology Students
	Partner(s): USU Water Quality Extension
Project Evaluation	Completed by teachers involved with student feedback and perhaps community partners
Project Bibliography	
	None
Plans for Future	
CMaP Activities	A variation of the environmental science aspect of the above project with a
	focus perhaps on plant ecology (trees/shrubs) or maybe abiotic influences on biotic populations, etc., within the immediate community of the school.