

Utah 6-12 Computer Science Standards November 8, 2019

Practice Language5:

Practice 1: Fostering an Inclusive Computing Culture

Building an inclusive and diverse computing culture requires strategies for
incorporating perspectives from people of different genders, ethnicities,
backgrounds, and abilities. Incorporating these perspectives involves
understanding the personal, ethical, social, economic, and cultural contexts in
which people operate. Considering the needs of diverse users during the design
process is essential to producing inclusive computational products.

By the end of Grade 12, students should be able to:

1. Include the unique perspectives of others and reflect on one’s own perspectives
when designing and developing computational products.
At all grade levels, students should recognize that the choices people make when they create artifacts are
based on personal interests, experiences, and needs. Students who are well-versed in fostering an
inclusive computing culture should be able to differentiate backgrounds and skill sets and know when to
call upon others, such as to seek out knowledge about potential end users or intentionally seek input from
people with diverse backgrounds.

2. Address the needs of diverse end users during the design process to produce
artifacts with broad accessibility and usability.

At any level, students should recognize that users of technology have different needs and preferences
and that not everyone chooses to use, or is able to use, the same technology products. At the higher
grades, students should become aware of professionally accepted accessibility standards and should be

5 K-12 Computer Science Framework. (October 2016) Retrieved from: https://k12cs.org/wp-
content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
5 | P a g e

https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf

Utah 6-12 Computer Science Standards November 8, 2019

able to evaluate computational artifacts for accessibility. Students should also begin to identify potential
bias during the design process to maximize accessibility in product design. For example, they can test an
app and recommend to its designers that it respond to verbal commands to accommodate users who are
blind or have physical disabilities.

3. Employ self- and peer-advocacy to address bias in interactions, product design, and
development methods.

After students have experience identifying diverse perspectives and including unique perspectives, they
should begin to employ self-advocacy strategies, such as speaking for themselves if their needs are not
met. As students’ progress, they should advocate for their peers when accommodations, such as an
assistive-technology peripheral device, are needed for someone to use a computational artifact.
Eventually, students should regularly advocate for both themselves and others.

Practice 2: Collaborating Around Computing

Collaborative computing is the process of performing a computational task by working
in pairs and on teams. Because it involves asking for the contributions and feedback
of others, effective collaboration can lead to better outcomes than working
independently. Collaboration requires individuals to navigate and incorporate diverse
perspectives, conflicting ideas, disparate skills, and distinct personalities. Students
should use collaborative tools to effectively work together and to create complex
artifacts.

By the end of Grade 12, students should be able to:

1. Cultivate working relationships with individuals possessing diverse perspectives,
skills, and personalities.

At any grade level, students should work collaboratively with others. As they progress, students should
use methods for giving all group members a chance to participate. Older students should strive to
improve team efficiency and effectiveness by regularly evaluating group dynamics. They should use
multiple strategies to make team dynamics more productive. For example, they can ask for the opinions
of quieter team members, minimize interruptions by more talkative members, and give individuals credit
for their ideas and their work.

2. Create team norms, expectations, and equitable workloads to increase efficiency and
effectiveness.
After students have had experience cultivating working relationships within teams, they should gain
experience working in particular team roles. As students’ progress, they should become less dependent
on the teacher assigning roles and become more adept at assigning roles within their teams. For
example, they should decide together how to take turns in different roles. Eventually, students should
independently organize their own teams and create common goals, expectations, and equitable
workloads. They should also manage project workflow using agendas and timelines and should evaluate
workflow to identify areas for improvement.

3. Solicit and incorporate feedback from, and provide constructive feedback to, team
members and other stakeholders.
At any level, students should ask questions of others and listen to their opinions. As they progress in
school, students should provide and receive feedback related to computing in constructive ways. For
example, pair programming is a collaborative process that promotes giving and receiving feedback. Older

6 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

students should engage in active listening by using questioning skills and should respond empathetically
to others. As they progress, students should be able to receive feedback from multiple peers and should
be able to differentiate opinions. Eventually, students should seek contributors from various
environments. These contributors may include end users, experts, or general audiences from online
forums.

4. Evaluate and select technological tools that can be used to collaborate on a project.

At any level, students should be able to use tools and methods for collaboration on a project. As students’
progress, they should use technological collaboration tools to manage teamwork, such as knowledge-
sharing tools and online project spaces. They should also begin to make decisions about which tools
would be best to use and when to use them. Eventually, students should use different collaborative tools
and methods to solicit input from not only team members and classmates but also others, such as
participants in online forums or local communities.

Practice 3: Recognizing and Defining Computational Problems

The ability to recognize appropriate and worthwhile opportunities to apply computation is
a skill that develops over time and is central to computing. Solving a problem with a
computational approach requires defining the problem, breaking it down into parts, and
evaluating each part to determine whether a computational solution is appropriate.

By the end of Grade 12, students should be able to:

1. Identify complex, interdisciplinary, real-world problems that can be solved
computationally.
At any level, students should be able to identify problems that have been solved computationally. As they
progress, they should ask clarifying questions to understand whether a problem or part of a problem can
be solved using a computational approach. For example, before attempting to write an algorithm to sort a
large list of names, students may ask questions about how the names are entered and what type of
sorting is desired. Older students should identify more complex problems that involve multiple criteria and
constraints. Eventually, students should be able to identify real-world problems that span multiple
disciplines, such as increasing bike safety with new helmet technology, and can be solved
computationally.

2. Decompose complex real-world problems into manageable subproblems that could
integrate existing solutions or procedures.

At any grade level, students should be able to break problems down into their component parts. As
students’ progress, they should decompose larger problems into manageable smaller problems. For
example, young students may think of an animation as multiple scenes and thus create each scene
independently. Students can also break down a program into sub-goals: getting input from the user,
processing the data, and displaying the result to the user. Eventually, as students encounter complex real-
world problems that span multiple disciplines or social systems, they should decompose complex
problems into manageable subproblems that could potentially be solved with programs or procedures that
already exist. For example, students could create an app to solve a community problem that connects to
an online database through an application programming interface (API).

3. Evaluate whether it is appropriate and feasible to solve a problem computationally.

After students have had some experience breaking problems down and identifying subproblems that can
be solved computationally, they should begin to evaluate whether a computational solution is the most
7 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

appropriate solution for a specific problem. For example, students might question whether using a
computer to determine whether someone is telling the truth would be advantageous. As students’
progress, they should systematically evaluate the feasibility of using computational tools to solve given
problems or subproblems, such as through a cost-benefit analysis. Eventually, students should include
more factors in their evaluations, such as how efficiency affects feasibility or whether a proposed approach
raises ethical concerns.

Practice 4: Developing and Using Abstractions

Abstractions are formed by identifying patterns and extracting common features from
specific examples to create generalizations. Using generalized solutions and parts of
solutions designed for broad reuse simplifies the development process by managing
complexity.

By the end of Grade 12, students should be able to:

1. Extract common features from a set of interrelated processes or complex
phenomena.
Students at all grade levels should be able to recognize patterns. As they progress, students should
identify patterns as opportunities for abstraction, such as recognizing repeated patterns of code that could
be more efficiently implemented as a loop. Eventually, students should extract common features from
more complex phenomena or processes. For example, students should be able to identify common
features in multiple segments of code and substitute a single segment that uses variables to account for
the differences. In a procedure, the variables would take the form of parameters. When working with data,
students should be able to identify important aspects and find patterns in related data sets such as crop
output, fertilization methods, and climate conditions.

2. Evaluate existing technological functionalities and incorporate them into new designs.
At all levels, students should be able to use well defined abstractions that hide complexity. Just as a car
hides operating details, such as the mechanics of the engine, a computer program’s “move” command
relies on hidden details that cause an object to change location on the screen. As they progress, students
should incorporate predefined functions into their designs, understanding that they do not need to know
the underlying implementation details of the abstractions that they use. Eventually, students should
understand the advantages of, and be comfortable using, existing functionalities (abstractions) including
technological resources created by other people, such as libraries and application programming
interfaces (APIs). Students should be able to evaluate existing abstractions to determine which should be
incorporated into designs and how they should be incorporated. For example, students could build
powerful apps by incorporating existing services, such as online databases that return geolocation
coordinates of street names or food nutrition information.

3. Create modules and develop points of interaction that can apply to multiple situations
and reduce complexity.
After students have had some experience identifying patterns, decomposing problems, using
abstractions, and taking advantage of existing resources, they should begin to develop their own
abstractions. As they progress, students should take advantage of opportunities to develop generalizable
modules. For example, students could write more efficient programs by designing procedures that are
used multiple times in the program. These procedures can be generalized by defining parameters that
create different outputs for a wide range of inputs. Later, students should be able to design systems of
interacting modules, each with a well-defined role, that coordinate to accomplish a common goal. Within
an object-oriented programming context, module design may include defining the interactions among
objects. At this stage, these modules, which combine both data and procedures, can be designed and
8 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

documented for reuse in other programs. Additionally, students can design points of interaction, such as a
simple user interface, either text or graphical, that reduces the complexity of a solution and hides lower
level implementation details.

4. Model phenomena and processes and simulate systems to understand and evaluate
potential outcomes.

Students at all grade levels should be able to represent patterns, processes, or phenomena. As they
progress, students should understand that computers can model real-world phenomena, and they should
use existing computer simulations to learn about real-world systems. For example, they may use a
preprogrammed model to explore how parameters affect a system, such as how rapidly a disease can
spread. Older students should model phenomena as systems, with rules governing the interactions within
the system. Students should analyze and evaluate these models against real-world observations. For
example, students might create a simple producer–consumer ecosystem model using a programming
tool. Eventually, they could progress to creating more complex and realistic interactions between species,
such as predation, competition, or symbiosis, and evaluate the model based on data gathered from
nature.

Practice 5: Creating Computational Artifacts

The process of developing computational artifacts embraces both creative expression
and the exploration of ideas to create prototypes and solve computational problems.
Students create artifacts that are personally relevant or beneficial to their community
and beyond. Computational artifacts can be created by combining and modifying
existing artifacts or by developing new artifacts. Examples of computational artifacts
include programs, simulations, visualizations, digital animations, robotic systems, and
apps.

By the end of Grade 12, students should be able to:

1. Plan the development of a computational artifact using an iterative process that
includes reflection on and modification of the plan, taking into account key features, time
and resource constraints, and user expectations.
At any grade level, students should participate in project planning and the creation of brainstorming
documents. As learning progresses, students should systematically plan the development of a program or
artifact and intentionally apply computational techniques, such as decomposition and abstraction, along
with knowledge about existing approaches to artifact design. Students should be capable of reflecting on
and, if necessary, modifying the plan to accommodate end goals.

2. Create a computational artifact for practical intent, personal expression, or to address
a societal issue.
Students at all grade levels should develop artifacts in response to a task or a computational problem. As
they progress, student expressions should become more complex and of increasingly broader
significance. Eventually, students should engage in independent, systematic use of design processes to
create artifacts that solve problems with social significance by seeking input from broad audiences.

3. Modify an existing artifact to improve or customize it.
At all grade levels, students should be able to examine existing artifacts to understand what they do. As
they progress, students should attempt to use existing solutions to accomplish a desired goal. For
example, students could attach a programmable light sensor to a physical artifact they have created to

9 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

make it respond to light. Later, they should modify or remix parts of existing programs to develop
something new or to add more advanced features and complexity. For example, students could modify
prewritten code from a single-player game to create a two-player game with slightly different rules.

Practice 6: Testing and Refining Computational Artifacts

Testing and refinement are the deliberate and iterative process of improving a
computational artifact. This process includes debugging (identifying and fixing errors)
and comparing actual outcomes to intended outcomes. Students also respond to the
changing needs and expectations of end users and improve the performance,
reliability, usability, and accessibility of artifacts.

By the end of Grade 12, students should be able to:

1. Systematically test computational artifacts by considering all scenarios and using test
cases.
At any grade level, students should be able to compare results to intended outcomes. As students’
progress, they should test computational artifacts by considering potential errors, such as what will
happen if a user enters invalid input. Eventually, testing should become a deliberate process that is more
iterative, systematic, and proactive. Older students should be able to anticipate errors and use that
knowledge to drive development. For example, students can test their program with inputs associated
with all potential scenarios.

2. Identify and fix errors using a systematic process.

At any grade level, students should be able to identify and fix errors in programs (debugging) and use
strategies to solve problems with computing systems (troubleshooting). As students’ progress, they
should become more adept at debugging programs and begin to consider logic errors: cases in which a
program works, but not as desired. In this way, students will examine and correct their own thinking. For
example, they might step through their program, line by line, to identify a loop that does not terminate as
expected. Eventually, older students should progress to using more complex strategies for identifying and
fixing errors, such as printing the value of a counter variable while a loop is running to determine how
many times the loop runs.

3. Evaluate and refine a computational artifact multiple times to enhance its
performance, reliability, usability, and accessibility.
After students have gained experience testing, debugging, and revising, they should begin to evaluate
and refine their computational artifacts. As students’ progress, the process of evaluation and refinement
should focus on improving performance and reliability. For example, students could observe a robot in a
variety of lighting conditions to determine that a light sensor should be less sensitive. Later, evaluation
and refinement should become an iterative process that also encompasses making artifacts more usable
and accessible. For example, students can incorporate feedback from a variety of end users to help guide
the size and placement of menus and buttons in a user interface.

Practice 7: Communicating About Computing

Communication involves personal expression and exchanging ideas with others. In
computer science, students communicate with diverse audiences about the use and
effects of computation and the appropriateness of computational choices. Students
write clear comments, document their work, and communicate their ideas through
multiple forms of media. Clear communication includes using precise language and
10 | P a g e

Utah 6-12 Computer Science Standards November 8, 2019

carefully considering possible audiences.

By the end of Grade 12, students should be able to:

1. Select, organize, and interpret large data sets from multiple sources to support a
claim.
At any grade level, students should be able to refer to data when communicating an idea. As students’
progress, they should work with larger data sets and organize the data in those larger sets to make
interpreting and communicating it to others easier, such as through the creation of basic data
representations. Eventually, students should be able to select relevant data from large or complex data
sets in support of a claim or to communicate the information in a more sophisticated manner.

2. Describe, justify, and document computational processes and solutions using
appropriate terminology consistent with the intended audience and purpose.
At any grade level, students should be able to talk about choices they make while designing a
computational artifact. Students should provide documentation for end users that explains their artifacts
and how they function, and they should both give and receive feedback. For example, students could
provide a project overview and ask for input from users. As students’ progress, they should incorporate
clear comments in their product and document their process using text, graphics, presentations, and
demonstrations.

3. Articulate ideas responsibly by observing intellectual property rights and giving
appropriate attribution.
All students should be able to explain the concepts of ownership and sharing. They should identify
instances of remixing, when ideas are borrowed and iterated upon, and give proper attribution. They
should also recognize the contributions of collaborators. Eventually, students should consider common
licenses that place limitations or restrictions on the use of computational artifacts. For example, a
downloaded image may have restrictions that prohibit modification of an image or using it for commercial
purposes.

11 | P a g e

