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CTE® 

STRANDS AND STANDARDSSTRANDS AND STANDARDS 
COMPUTER PROGRAMMING, ADVANCED 

Course Description 

This is an advanced course in computer programming/software engineering and applications. It reviews and 
builds on the concepts introduced in Computer Programming 1 and 2. It introduces students to dynamic data 
structures, advanced utilization of classes, and applications of recursion through the application of mathemati-
cal concepts. This course will also highlight the differences between the many different languages of computer 
programming. 

Intended Grade Level 10-12
Units of Credit 1.0 
Core Code 35.02.00.00.040
Concurrent Enrollment Core Code 35.02.00.13.040
Prerequisite Computer Programming 2 or Teacher 

Approval 
Skill Certification Test Number 840 
Test Weight 1.0 
License Area of Concentration CTE and/or Secondary Education 6-12 
Required Endorsement(s) 
Endorsement 1 Intro to Computer Science 
Endorsement 2 Programming & Software Development 
Endorsement 3 N/A 

ADA Compliant: March 2022 
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SSTRAND 1TRAND 1 

Standard 1

Standard 2

Standard 3

Performance Skills

Standard 1

Standard 2

Performance Skills

Students will develop applications which make advanced use of the skills and concepts developed in 
Computer Programming 1 and Computer Programming 2. 

Standard 1 
Demonstrate the ability to develop complex applications. 

• Develop complex applications using input, calculations, and output
• Develop complex applications using control structures (loops, if else, select, etc.)
• Develop complex applications in object-oriented programming
• Develop complex applications using data structures
• Develop complex applications using files (sequential files)

Standard 2 
Utilize recursive algorithms. 

• Analyze and solve recursive functions or methods
• Utilize recursive algorithms to solve a problem
• Identify the base case, recursive case, and action of each recursive function or method
• (Optional) Understand the use of a recursive helper function or method

Standard 3 
Create advanced functions and methods. 

• Create and use overloaded constructors and methods
• Create and use overloaded operators (C++)

Performance Skills 
• Develop advanced applications using input, calculations, output, IF structures, iteration, sub-programs,

recursion, arrays, sorting and a database.
• Demonstrate the ability to use random access files in a program.

SSTRAND 2TRAND 2 
Students will use searching and sorting algorithms. 

Standard 1 
Demonstrate the ability to search data structures in programs. 

• Develop a binary search
• Compare the efficiency and appropriateness of sequential and binary searches

Standard 2 
Demonstrate the ability to sort data structures in programs. 

• Sort arrays using iterative sorting algorithms (selection, insertion, bubble)
• Recognize recursive sorting algorithms (merge, quick, heap)
• Compare the efficiency of different sorting algorithms

Performance Skills 
• Demonstrate the ability to search data structures using binary and hash searches comparing the

efficiency between sequential and binary searches.
• Demonstrate the ability to sort data structures using quadratic (n2) and binary (n log n) sorts comparing

the efficiency between various sorts using BigO notation.
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SSTRAND 3TRAND 3 

Standard 1

Performance Skills

Standard 1

Standard 2

Performance Skills

Standard 1

Standard 2

Students will utilize multidimensional arrays. 

Standard 1 
Utilize multidimensional arrays. 

• Initialize multidimensional arrays
• Input and output data into and from multidimensional arrays
• Perform operations on multidimensional arrays
• Perform searches on multidimensional arrays

Performance Skills 

SSTRAND 4TRAND 4 
Students will properly employ dynamic data structures/ abstract data types (ADTs). 

Standard 1 
Demonstrate the ability to use stacks in programs. 

• Declare stack structures
• Initialize stacks
• Check for empty and full stacks
• Push on to and pop off values from stacks
• Develop an application that utilizes stacks

Standard 2 
Demonstrate the ability to use queues in programs. 

• Declare queue structures
• Check for empty and full queues
• Initialize queues
• Enqueue values on to and dequeue values off of queues
• Develop an application that utilize queues

Performance Skills 
Demonstrate the ability to use linked lists, stacks, queues, and binary trees. 

SSTRAND 5TRAND 5 
Students will design and implement advanced objected oriented concepts. 

Standard 1 
Implement object-oriented programs 

• Create classes with minimal extraneous relationships (high cohesion and low coupling)
• Demonstrate and use composition and aggregation (HAS-A) relationships
• Demonstrate the use of class variables (static variables)

Standard 2 
Implement inheritance in an objected oriented program. 

• Utilize class hierarchies (parent-child relationships)
• Demonstrate IS-A relationships
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Standard 3

Standard 4

Performance Skills

Standard 1

Standard 1

Standard 2

Performance Skills

• Override methods. Understand how to call the overriding method from the child
• Demonstrate the protected modifier
• Call a parent class constructor from the child’s constructor

Standard 3 
Create and use abstract classes. 

• Create and implement abstract classes
• Implement interfaces (purely abstract classes)
• Know difference between abstract & interface classes

Standard 4 
Implement polymorphism. 

• Demonstrate that a parent object variable can hold an instance of a child class
• Determine IS-A relationships via code (e.g. instanceof, typeof, isa)
• Demonstrate typecasting via method calls of inherited objects

Performance Skills 
• Develop advanced application projects.
• Develop advanced applications using object-oriented programming.
• Create user-defined inherited classes demonstrating overloading techniques.

SSTRAND 6TRAND 6 
Students will use Unified Modeling Language (UML) to design object-oriented programs. 

Standard 1 
Demonstrate the use of an UML in design. 

• Create an activity diagram
• Create a class diagram for the class hierarchy of a program
• Create a sequence diagram for a method
• Translate diagrams to code

SSTRAND 7TRAND 7 
Students will develop a program of significant complexity as part of a portfolio. 

Standard 1 
Create an individual program of significant complexity. 

• Create design documentation for the project
• Follow accepted object-oriented programming methodology when writing the code

Standard 2 
Compile a portfolio of the individual and group programs developed. 

• Include sample design work
• Include sample program source code

Performance Skills 
• Create an individual program of significant complexity and size (300-500 lines).
• Compile a portfolio of the individual and group programs developed during the course.
• Participate in a work-based learning experience such as a job shadow, internship, field trip to a software
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Skill Certificate Test Points by Strand

engineering firm or listen to an industry guest speaker and/or compete in a high school programming 
contest. 

Workplace Skills 
Workplace Skills taught: 

• Communication
• Problem Solving
• Teamwork
• Critical Thinking
• Dependability
• Accountability
• Legal requirements / expectations

Skill Certificate Test Points by Strand 

Test Name  Test # Number of Test Points by Strand Total Points Total Questions 

1 2 3 4 5 6 7 8 9 10 
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Skills Reference Sheet 

Assignment, Display, and Input 

a = expression Evaluates expression and then assigns a copy of the result 

to the variable a. 

DISPLAY(expression) Displays the value of (expression) in the console window. 

INPUT( ) Accepts a value from the user and returns the input value. 

Arithmetic Operators and Numeric Procedures 

a + b The arithmetic operators +, -, *, and / are used to perform 
a - b arithmetic on a and b. 
a * b 

a / b For example, 17 / 5 evaluates to 3.4. 

The order of operations used in mathematics applies when 
evaluating expressions. 

a MODULUS b Evaluates to the remainder when a is divided by b. 
-or- a
MOD b For example, 17 MOD 5 evaluates to 2. 

MODULUS (MOD) has the same precedence as the * and / 

operators. 

Relational and Boolean Operators 

NOT condition Evaluates to true if condition is false; otherwise 

evaluates to false. 

condition1 AND 

condition2 

Evaluates to true if both condition1 and condition2 are 

true; otherwise evaluates to false. 

condition1 OR 

condition2 

Evaluates to true if condition1 is true or if condition2 

is true or if both condition1 and condition2 are true; 

otherwise evaluates to false. 

FOR(condition) The code in <block of statements> is executed a certain 
{ number of times. 

<block of 

statements> 

} 
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COMPUTER PROGRAMMING ADVANCED 

WHILE(condition) The code in <block of statements> is repeated until the 
{ (condition) evaluates to false. 

<block of 

statements> 

} 

IF(condition1) 

{ 

<first block of 

statements> 

{ 

ELSE IF(condition2) 

{ 

<second block of 

statements> 

} 

ELSE 

{ 

<third block of 

statements> 

} 

If (condition1) evaluates to true, the code in <first 

block of statements> is executed; if (condition1) 

evaluates to false, then (condition2) is tested; if 

(condition2) evaluates to true, the code in <second 

block of statements> is executed; if both (condition1) 

and (condition2) evaluate to false, then the code in 

<third block of statements> is executed. 

Procedures and Procedure Calls 

PROCEDURE procName( ) Defines procName as a procedure that takes no arguments. 
{ The procedure contains <block of statements>. 

<block of 

statements> The procedure procName can be called using the following 
} 

notation: 

procName( ) 
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