
Learning that works for Utah

CTE®

STRANDS AND STANDARDSSTRANDS AND STANDARDS
COMPUTER PROGRAMMING, ADVANCED

Course Description

This is an advanced course in computer programming/software engineering and applications. It reviews and
builds on the concepts introduced in Computer Programming 1 and 2. It introduces students to dynamic data
structures, advanced utilization of classes, and applications of recursion through the application of mathemati-
cal concepts. This course will also highlight the differences between the many different languages of computer
programming.

Intended Grade Level 10-12
Units of Credit 1.0
Core Code 35.02.00.00.040
Concurrent Enrollment Core Code 35.02.00.13.040
Prerequisite Computer Programming 2 or Teacher

Approval
Skill Certification Test Number 840
Test Weight 1.0
License Area of Concentration CTE and/or Secondary Education 6-12
Required Endorsement(s)
Endorsement 1 Intro to Computer Science
Endorsement 2 Programming & Software Development
Endorsement 3 N/A

ADA Compliant: March 2022

Computer Programing Advanced

2]Page REVISED: September 2021

SSTRAND 1TRAND 1

Standard 1

Standard 2

Standard 3

Performance Skills

Standard 1

Standard 2

Performance Skills

Students will develop applications which make advanced use of the skills and concepts developed in
Computer Programming 1 and Computer Programming 2.

Standard 1
Demonstrate the ability to develop complex applications.

• Develop complex applications using input, calculations, and output
• Develop complex applications using control structures (loops, if else, select, etc.)
• Develop complex applications in object-oriented programming
• Develop complex applications using data structures
• Develop complex applications using files (sequential files)

Standard 2
Utilize recursive algorithms.

• Analyze and solve recursive functions or methods
• Utilize recursive algorithms to solve a problem
• Identify the base case, recursive case, and action of each recursive function or method
• (Optional) Understand the use of a recursive helper function or method

Standard 3
Create advanced functions and methods.

• Create and use overloaded constructors and methods
• Create and use overloaded operators (C++)

Performance Skills
• Develop advanced applications using input, calculations, output, IF structures, iteration, sub-programs,

recursion, arrays, sorting and a database.
• Demonstrate the ability to use random access files in a program.

SSTRAND 2TRAND 2
Students will use searching and sorting algorithms.

Standard 1
Demonstrate the ability to search data structures in programs.

• Develop a binary search
• Compare the efficiency and appropriateness of sequential and binary searches

Standard 2
Demonstrate the ability to sort data structures in programs.

• Sort arrays using iterative sorting algorithms (selection, insertion, bubble)
• Recognize recursive sorting algorithms (merge, quick, heap)
• Compare the efficiency of different sorting algorithms

Performance Skills
• Demonstrate the ability to search data structures using binary and hash searches comparing the

efficiency between sequential and binary searches.
• Demonstrate the ability to sort data structures using quadratic (n2) and binary (n log n) sorts comparing

the efficiency between various sorts using BigO notation.

Computer Programing Advanced

3]Page REVISED: September 2021

SSTRAND 3TRAND 3

Standard 1

Performance Skills

Standard 1

Standard 2

Performance Skills

Standard 1

Standard 2

Students will utilize multidimensional arrays.

Standard 1
Utilize multidimensional arrays.

• Initialize multidimensional arrays
• Input and output data into and from multidimensional arrays
• Perform operations on multidimensional arrays
• Perform searches on multidimensional arrays

Performance Skills

SSTRAND 4TRAND 4
Students will properly employ dynamic data structures/ abstract data types (ADTs).

Standard 1
Demonstrate the ability to use stacks in programs.

• Declare stack structures
• Initialize stacks
• Check for empty and full stacks
• Push on to and pop off values from stacks
• Develop an application that utilizes stacks

Standard 2
Demonstrate the ability to use queues in programs.

• Declare queue structures
• Check for empty and full queues
• Initialize queues
• Enqueue values on to and dequeue values off of queues
• Develop an application that utilize queues

Performance Skills
Demonstrate the ability to use linked lists, stacks, queues, and binary trees.

SSTRAND 5TRAND 5
Students will design and implement advanced objected oriented concepts.

Standard 1
Implement object-oriented programs

• Create classes with minimal extraneous relationships (high cohesion and low coupling)
• Demonstrate and use composition and aggregation (HAS-A) relationships
• Demonstrate the use of class variables (static variables)

Standard 2
Implement inheritance in an objected oriented program.

• Utilize class hierarchies (parent-child relationships)
• Demonstrate IS-A relationships

Computer Programing Advanced

4]Page REVISED: September 2021

Standard 3

Standard 4

Performance Skills

Standard 1

Standard 1

Standard 2

Performance Skills

• Override methods. Understand how to call the overriding method from the child
• Demonstrate the protected modifier
• Call a parent class constructor from the child’s constructor

Standard 3
Create and use abstract classes.

• Create and implement abstract classes
• Implement interfaces (purely abstract classes)
• Know difference between abstract & interface classes

Standard 4
Implement polymorphism.

• Demonstrate that a parent object variable can hold an instance of a child class
• Determine IS-A relationships via code (e.g. instanceof, typeof, isa)
• Demonstrate typecasting via method calls of inherited objects

Performance Skills
• Develop advanced application projects.
• Develop advanced applications using object-oriented programming.
• Create user-defined inherited classes demonstrating overloading techniques.

SSTRAND 6TRAND 6
Students will use Unified Modeling Language (UML) to design object-oriented programs.

Standard 1
Demonstrate the use of an UML in design.

• Create an activity diagram
• Create a class diagram for the class hierarchy of a program
• Create a sequence diagram for a method
• Translate diagrams to code

SSTRAND 7TRAND 7
Students will develop a program of significant complexity as part of a portfolio.

Standard 1
Create an individual program of significant complexity.

• Create design documentation for the project
• Follow accepted object-oriented programming methodology when writing the code

Standard 2
Compile a portfolio of the individual and group programs developed.

• Include sample design work
• Include sample program source code

Performance Skills
• Create an individual program of significant complexity and size (300-500 lines).
• Compile a portfolio of the individual and group programs developed during the course.
• Participate in a work-based learning experience such as a job shadow, internship, field trip to a software

Computer Programing Advanced

5]Page REVISED: September 2021

Skill Certificate Test Points by Strand

engineering firm or listen to an industry guest speaker and/or compete in a high school programming
contest.

Workplace Skills
Workplace Skills taught:

• Communication
• Problem Solving
• Teamwork
• Critical Thinking
• Dependability
• Accountability
• Legal requirements / expectations

Skill Certificate Test Points by Strand

Test Name Test # Number of Test Points by Strand Total Points Total Questions

1 2 3 4 5 6 7 8 9 10

COMPUTER PROGRAMMING ADVANCED

Skills Reference Sheet

Assignment, Display, and Input

a = expression Evaluates expression and then assigns a copy of the result

to the variable a.

DISPLAY(expression) Displays the value of (expression) in the console window.

INPUT() Accepts a value from the user and returns the input value.

Arithmetic Operators and Numeric Procedures

a + b The arithmetic operators +, -, *, and / are used to perform
a - b arithmetic on a and b.
a * b

a / b For example, 17 / 5 evaluates to 3.4.

The order of operations used in mathematics applies when
evaluating expressions.

a MODULUS b Evaluates to the remainder when a is divided by b.
-or- a
MOD b For example, 17 MOD 5 evaluates to 2.

MODULUS (MOD) has the same precedence as the * and /

operators.

Relational and Boolean Operators

NOT condition Evaluates to true if condition is false; otherwise

evaluates to false.

condition1 AND

condition2

Evaluates to true if both condition1 and condition2 are

true; otherwise evaluates to false.

condition1 OR

condition2

Evaluates to true if condition1 is true or if condition2

is true or if both condition1 and condition2 are true;

otherwise evaluates to false.

FOR(condition) The code in <block of statements> is executed a certain
{ number of times.

<block of

statements>

}

6]Page REVISED: September 2021

COMPUTER PROGRAMMING ADVANCED

WHILE(condition) The code in <block of statements> is repeated until the
{ (condition) evaluates to false.

<block of

statements>

}

IF(condition1)

{

<first block of

statements>

{

ELSE IF(condition2)

{

<second block of

statements>

}

ELSE

{

<third block of

statements>

}

If (condition1) evaluates to true, the code in <first

block of statements> is executed; if (condition1)

evaluates to false, then (condition2) is tested; if

(condition2) evaluates to true, the code in <second

block of statements> is executed; if both (condition1)

and (condition2) evaluate to false, then the code in

<third block of statements> is executed.

Procedures and Procedure Calls

PROCEDURE procName() Defines procName as a procedure that takes no arguments.
{ The procedure contains <block of statements>.

<block of

statements> The procedure procName can be called using the following
}

notation:

procName()

7]Page REVISED: September 2021

Accessibility Report

		Filename:

		COMPUTER PROGRAMMING ADVANCED.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
	Test Name: Computer Pro Advanced
	Test Number: 840
	Strand #: 2
	Strand # 2: 5
	Strand # 3: 3
	Strand # 4: 7
	Strand # 6: 12
	Strand # 7: 5
	Strand # 8: 0
	Strand # 9:
	Strand # 10:
	Strand # 11:
	Test Number 2: 34
	Test Number 3: 30

