Interpret the structure of expressions (A.SSE.1-2)

Standard A.SSE.2: Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{\mathbf{4}}$ as $\left(x^{\mathbf{2}}\right)^{\mathbf{2}}-\left(y^{\mathbf{2}}\right)^{\mathbf{2}}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.
Concepts and Skills to Master

- Rewrite expressions using structure to identify important components of the expression (for example, to determine where zeros may occur or to identify the end behavior).
Related Standards: Current Course
Related Standards: Future Courses
II.A.SSE.1, II.A.SSE.3, II.A.REI.4, II.N.RN.2, II.N.CN. 8
III.A.CED.4, III.A.SSE.1, III.A.SSE.2, III.A.APR.4, III.A.APR.5,
III.A.APR.7, III.N.CN.8, III.F.IF.7c, III.F.IF.8, P.F.IF.7d

Support for Teachers

Critical Background Knowledge

- Apply properties of operations (commutative, associative, distributive) to generate equivalent expressions (6.EE.3)
- Understand that rewriting an expression in different forms can shed light on the problem and how the quantities in it are related (7.EE.2)
- Expand expressions using the distributive property (8.EE.7b)

Academic Vocabulary

Resources

Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5620\#71497

Write expressions in equivalent forms to solve problems, balancing conceptual understanding and procedural fluency in work with equivalent expressions (A.SSE.3)

Standard A.SSE.3: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. Forexample, development of skill in factoring and completing the square goes hand in hand with understanding what differentforms of a quadratic expression reveal.
a. Factor a quadratic expression to reveal the zeros of the function it defines.
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
c. Use the properties of exponents to transform expressions for exponential functions. Forexample, the expression $I . I 5^{\mathrm{t}}$ can be rewritten as $\left(I . I 5^{1 / 12}\right)^{12 \mathrm{t}} \approx I .0 I 2^{12 \mathrm{t}}$ toreveal the approximate equivalent monthly interest rate if the annual rate is 15%.

Concepts and Skills to Master

- Explain how to use equivalent forms of expressions to determine important components of a quadratic function.
- Solve contextual problems using equivalent forms of expressions (for example, find extrema, end behavior and growth/decay factors).

Related Standards: Current Course \quad Related Standards: Future Courses

II.N.RN.2, II.A.SSE.1, II.A.SSE.2, II.A.REI.4, II.F.IF.8, II.F.BF.1b, II.G.GPE. 1
III.A.CED.4, III.A.SSE.1, III.A.SSE.2, III.A.APR.4, III.A.APR.6, III.F.IF.7c, III.F.IF.8, P.F.IF.7d, P.G.GPE.2, P.G.GPE. 3

Support for Teachers

Critical Background Knowledge

- Understand the distributive property in simplifying and expanding expressions.
- Various types of factoring skills.
- Apply properties of operations (commutative, associative, distributive) to generate equivalent expressions (6.EE.3)
- Understand that rewriting an expression in different forms can shed light on the problem and how the quantities in it are related (7.EE.2)
- Expand expressions using the distributive property (8.EE.7b)

Academic Vocabulary
factors, coefficients, terms, exponent, base, constant, variable, binomial, monomial, polynomial
Resources
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5620\#71499

