Perform arithmetic operations on polynomials, extending beyond the quadratic polynomials (Standards A.APR.1).

Standard A.APR.1: Understand that all polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Concepts and Skills to Master

- Add, subtract and multiply polynomials.
- Understand closure of polynomials for addition, subtraction, and multiplication (for example, extend properties of arithmetic to polynomial arithmetic).

Related Standards: Current Course	Related Standards: Future Courses
III.N.CN.8, III.A.SSE.1, III.A.APR.2, III.A.APR.3, III.A.APR.4, III.A.APR.5,	P.N.CN.3, P.N.CN.5, P.N.CN.10
III.A.APR.6, III.A.APR.7	

Critical Background Knowledge	
• Performing the mathematical operations of addition, subtraction, and multiplication using quadratics (II.A.APR.1)	
 Understanding closure of polynomials for addition, subtraction, and multiplication (II.A.APR.1) 	
Academic Vocabulary	
closure	
Resources	
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630#71594	

Understand the relationship between zeros and factors of polynomials (Standards A.APR.2-3).

Standard A.APR.2: Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x-a is p(a), so p(a) = 0 if and only if (x-a) is a factor of p(x).

Concepts and Skills to Master

- Understand that if p(a) = 0 then (x a) is a factor of p(x).
- Understand that if (x a) is a factor of p(x) then p(a) = 0
- Use the Remainder Theorem to determine zeros and factors of polynomials.
- Explain the relationship between the quotient and the remainder for polynomial division problems.

Related Standards: Current Course	Related Standards: Future Courses
III.A.APR.1, III.A.APR.3, III.A.APR.6, III.N.CN.9, III.A.SSE.1, III.A.SSE.2,	<u>P.F.IF.7</u>
<u>III.A.CED.1, III.F.IF.4, III.F.IF.7, III.F.IF.8</u>	

Critic	cal Background Knowledge (Access background knowledge)
٠	Solve quadratic equations (<u>II.N.CN.7</u> , <u>II.N.CN.8</u> , <u>II.N.CN.9</u>)
٠	Factoring a quadratic expression to reveal the zeros of the function it defines (II.A.SSE.3, II.F.IF.8)
Acad	demic Vocabulary
Ren	nainder Theorem
Reso	burces
Curri	iculum Resources: https://www.uen.org/core/core.do?courseNum=5630#71596

Understand the relationship between zeros and factors of polynomials (Standards A.APR.2-3).

Standard A.APR.3: Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Concepts and Skills to Master

- Given a polynomial function in factored form, identify and use the zeros and other key features to make a sketch of the graph of the function.
- Recognize that repeated factors indicate multiplicity of roots and understand how they impact the graph.

Related Standards: Current Course	Related Standards: Future Courses
III.A.APR.2, III.A.SSE.1, III.A.SSE.2, III.A.CED.1, III.N.CN.9, III.F.IF.4,	P.F.IF.7
<u>III.F.IF.7.c</u> , <u>III.F.IF.8</u>	

Critical Background Knowledge
 Graphing quadratic functions by hand, showing intercepts, and maxima or minima (<u>II.F.IF.7</u>)
Academic Vocabulary
Resources
<u>Curriculum Resources</u> : https://www.uen.org/core/core.do?courseNum=5630#71597

Use polynomial identities to solve problems (Standards A.APR.4-5).	
Standard A.APR.4: Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity (x ² +	
$(y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.	
Concepts and Skills to Master	
Prove polynomial identities that expand or factor polynomials.	
Use structure to show the relationship between two related polynomial expressions.	
Related Standards: Current Course Related Standards: Future Courses	
III.A.SSE.1, III.A.SSE.2, III.N.CN.8, III.F.IF.8 P.F.TF.9	

Critical Background Knowledge
• Use the structure of an expression to rewrite it (II.A.SSE.2, II.A.SSE.3, II.F.IF.8)
Academic Vocabulary
polynomial identity
Resources
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630#71599

Use polynomial identities to solve problems (Standards A.APR.4-5).

Standard A.APR.5: Know and apply the Binomial Theorem for the expansion of $(x+y)^n$ in powers of x and y for a positive integer n, where x and y are any numbers. For example, with coefficients determined by Pascal's Triangle.

Concepts and Skills to Master

• Find terms for an expanded product using the Binomial Theorem, recognizing how Pascal's Triangle can be useful in the expansion	
Related Standards: Current Course Related Standards: Future Courses	
III.A.SSE.1, III.A.SSE.2, III.F.IF.8 P.S.CP.9	

Critical Background Knowledge
• Use the structure of an expression to rewrite it (<u>II.A.SSE.2</u> , <u>II.A.SSE.3</u> , <u>II.F.IF.8</u>)
Academic Vocabulary
Binomial Theorem, Pascal's Triangle
Resources
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630#71600

Rewrite rational expressions (Standards A.APR.6-7).	
Standard A.APR.6: Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$,	
and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division or, for the more complicated	
examples, a computer algebra system.	
Concepts and Skills to Master	
• Gain procedural fluency and conceptual understanding of how and why to rewrite rational expressions as quotients and remainders.	
• Rewrite simple rational expressions using inspection, long division and computer algebra system to divide complicated polynomials.	
Related Standards: Current Course Related Standards: Future Courses	
III.A.SSE.1, III.A.SSE.2, III.A.APR.2, III.A.APR.7, III.F.IF.7d, III.F.IF.8	P.F.IF.7

Critica	Critical Background Knowledge	
• •	Multiplying/adding/subtracting polynomials (<u>II.A.APR.1</u>)	
• F	Find whole number quotients and remainders (<u>4.NBT.6</u>)	
Acade	emic Vocabulary	
ratio	onal expression, computer algebra system	
Resou	urces	
Curric	culum Resources: https://www.uen.org/core/core.do?courseNum=5630#71602	

Rewrite rational expressions (Standards A.APR.6-7).

Standard A.APR.7: Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

Concepts and Skills to Master

- Add, subtract, multiply, and divide rational expressions.
- Understand that rational expressions are closed under addition, subtraction, multiplication, and non-zero division.
- Relate rational number arithmetic to rational expression arithmetic and become fluent with the latter.

Related Standards: Current Course	Related Standards: Future Courses
III.A.SSE.1, III.A.SSE.2, III.A.APR.1, III.A.APR.2, III.A.APR.6, III.F.IF.8	

Critical Background Knowledge	
 Understand operations with rational numbers (7.NS.1, 7.NS.2) and the closure property (II.N.RN.3) 	
Closure of polynomials (<u>II.A.APR.1</u>)	
Academic Vocabulary	
rational expression, computer algebra system	
Resources	
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630#71603	