Perform arithmetic operations on polynomials, extending beyond the quadratic polynomials (Standards A.APR.1).

Standard A.APR.1: Understand that all polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Concepts and Skills to Master

- Add, subtract and multiply polynomials.
- Understand closure of polynomials for addition, subtraction, and multiplication (for example, extend properties of arithmetic to polynomial arithmetic).

```
Related Standards: Current Course }\quad\mathrm{ Related Standards: Future Courses
III.N.CN.8, III.A.SSE.1, III.A.APR.2, III.A.APR.3, III.A.APR.4, III.A.APR.5, I.N.CN.3, P.N.CN.5, P.N.CN.10
III.A.APR.6, III.A.APR.7
```


Support for Teachers

Critical Background Knowledge

- Performing the mathematical operations of addition, subtraction, and multiplication using quadratics (II.A.APR.1)
- Understanding closure of polynomials for addition, subtraction, and multiplication (II.A.APR.1)

Academic Vocabulary
closure
Resources
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630\#71594

Understand the relationship between zeros and factors of polynomials (Standards A.APR.2-3).

Standard A.APR.2: Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.

Concepts and Skills to Master

- Understand that if $p(a)=0$ then $(x-a)$ is a factor of $p(x)$.
- Understand that if $(x-a)$ is a factor of $p(x)$ then $p(a)=0$
- Use the Remainder Theorem to determine zeros and factors of polynomials.
- Explain the relationship between the quotient and the remainder for polynomial division problems.

Related Standards: Current Course \quad Related Standards: Future Courses
III.A.APR.1, III.A.APR.3, III.A.APR.6, III.N.CN.9, III.A.SSE.1, III.A.SSE.2, P.F.IF. 7
III.A.CED.1, III.F.IF.4, III.F.IF.7, III.F.IF. 8

Support for Teachers

Critical Background Knowledge (Access background knowledge)

- \quad Solve quadratic equations (II.N.CN.7, II.N.CN.8, II.N.CN.9)
- Factoring a quadratic expression to reveal the zeros of the function it defines (II.A.SSE.3, II.F.IF.8)

Academic Vocabulary
Remainder Theorem

Resources

Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630\#71596

Understand the relationship between zeros and factors of polynomials (Standards A.APR.2-3).

Standard A.APR.3: Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Concepts and Skills to Master

- Given a polynomial function in factored form, identify and use the zeros and other key features to make a sketch of the graph of the function.
- Recognize that repeated factors indicate multiplicity of roots and understand how they impact the graph.

Related Standards: Current Course	Related Standards: Future Courses
III.A.APR.2, III.A.SSE.1, III.A.SSE.2, III.A.CED.1, III.N.CN.9, III.F.IF.4,	P.F.IF.7

Support for Teachers

Critical Background Knowledge

- Graphing quadratic functions by hand, showing intercepts, and maxima or minima (II.F.IF.7)

Academic Vocabulary

Resources

Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630\#71597

Use polynomial identities to solve problems (Standards A.APR.4-5).

Standard A.APR.4: Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(\mathrm{x}^{\mathbf{2}}+\right.$ $\left.y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.
Concepts and Skills to Master

- Prove polynomial identities that expand or factor polynomials.
- Use structure to show the relationship between two related polynomial expressions.

Related Standards: Current Course	Related Standards: Future Courses

III.A.SSE.1, III.A.SSE.2, III.N.CN.8, III.F.IF. 8 P.F.TF. 9

Support for Teachers

Critical Background Knowledge

- Use the structure of an expression to rewrite it (II.A.SSE.2, II.A.SSE.3, II.F.IF.8)

Academic Vocabulary
polynomial identity
Resources
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630\#71599

Use polynomial identities to solve problems (Standards A.APR.4-5).						
Standard A.APR.5: Know and applythe BinomialTheorem fortheexpansion of $(x+y)^{n}$ in powers of x and y for a positive integer n, where x and y are any numbers. For example, with coefficients determined by Pascal's Triangle. Concepts and Skills to Master $\bullet \quad$ Find terms for an expanded product using the Binomial Theorem, recognizing how Pascal's Triangle can be useful in the expansion Related Standards: Current Course III.A.SSE.1, III.A.SSE.2, III.F.IF. 8	Related Standards: Future Courses					

Support for Teachers

Critical Background Knowledge

- Use the structure of an expression to rewrite it (II.A.SSE.2, II.A.SSE.3, II.F.IF.8)

Academic Vocabulary
Binomial Theorem, Pascal's Triangle
Resources
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630\#71600

Rewrite rational expressions (Standards A.APR.6-7).

Standard A.APR.6: Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division or, for the more complicated examples, a computer algebra system.

Concepts and Skills to Master

- Gain procedural fluency and conceptual understanding of how and why to rewrite rational expressions as quotients and remainders.
- Rewrite simple rational expressions using inspection, long division and computer algebra system to divide complicated polynomials.

Related Standards: Current Course

Related Standards: Future Courses
III.A.SSE.1, III.A.SSE.2, III.A.APR.2, III.A.APR.7, III.F.IF.7d, III.F.IF. 8 P.F.IF. 7

Support for Teachers

Critical Background Knowledge

- Multiplying/adding/subtracting polynomials (II.A.APR.1)
- Find whole number quotients and remainders (4.NBT.6)

Academic Vocabulary
rational expression, computer algebra system
Resources
Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630\#71602

Rewrite rational expressions (Standards A.APR.6-7).

Standard A.APR.7: Understand that rational expressions form a system analogous to the rational numbers, closed under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, multiply, and divide rational expressions.

Concepts and Skills to Master

- Add, subtract, multiply, and divide rational expressions.
- Understand that rational expressions are closed under addition, subtraction, multiplication, and non-zero division.
- Relate rational number arithmetic to rational expression arithmetic and become fluent with the latter.

Related Standards: Current Course	Related Standards: Future Courses

III.A.SSE.1, III.A.SSE.2, III.A.APR.1, III.A.APR.2, III.A.APR.6, III.F.IF. 8

Support for Teachers

Critical Background Knowledge

- Understand operations with rational numbers (7.NS.1, ㄱ.NS.2) and the closure property (II.N.RN.3)
- Closure of polynomials (II.A.APR.1)

Academic Vocabulary
rational expression, computer algebra system

Resources

Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630\#71603

