Understand solving equations as a process of reasoning and explain the reasoning (Standards A.REI.2).

Standard III.A.REI.2: Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.

Concepts and Skills to Master
- Solve rational equations in one variable.
- Solve radical equations in one variable.
- Identify extraneous solutions and explain the conditions that cause them.

Related Standards: Current Course
- III.A.APR.6, III.A.APR.7, III.A.SSE.1, III.A.SSE.2, III.A.CED.1, III.A.CED.3, III.A.CED.4, III.F.IF.8, III.F.BF.4

Related Standards: Future Courses
P.F.BF.1c, P.F.BF.4, P.F.IF.7d

Support for Teachers

Critical Background Knowledge (Access Background Knowledge)
- Producing equivalent forms of expressions (II.A.SSE.3)
- Rearranging formulas to highlight a quantity of interest (I.A.CED.4 and II.A.CED.4)
- Using the structure of an expression to identify ways to rewrite it (II.A.SSE.2)
- Know and use the properties to solve an equation (I.A.REI.1)

Academic Vocabulary
externeous solution

Resources
Curriculum Resources: http://www.uen.org/core/core.do?courseNum=5630#71604
Represent and solve equations and inequalities (Standards A.REI.11).

Standard A.REI.11: Explain why the x-coordinates of the points where the graphs of the equations \(y = f(x) \) and \(y = g(x) \) intersect are the solutions of the equation \(f(x) = g(x) \); find the solutions approximately, for example, using technology to graph the functions, make tables of values, or find successive approximations. Include cases where \(f(x) \) and/or \(g(x) \) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. ★

Concepts and Skills to Master

- Approximate solutions to systems of two equations using graphing technology.
- Approximate solutions to systems of two equations using tables of values.
- Explain why the x-coordinates of the points where the graphs of the equations \(y = f(x) \) and \(y = g(x) \) intersect are the solutions of the equation \(f(x) = g(x) \).
- Be able to express that when \(f(x) = g(x) \), the two equations have the same solution(s).
- Explain, in their own words, how the x-coordinate of a solution to the system \(y = f(x) \) and \(y = g(x) \) solves \(f(x) = g(x) \).
- Find approximate solutions for the system \(y = f(x) \) and \(y = g(x) \) using graphs or tables.
- Use successive approximations as a method to solve the system \(y = f(x) \) and \(y = g(x) \).

Related Standards:

- Current Course: III.A.CED.2, III.A.CED.3, III.A.REI.2, III.F.LE.5, III.F.TF.7
- Future Courses: P.A.REI.8, P.A.REI.9

Support for Teachers

Critical Background Knowledge (Access Background Knowledge)

- Understanding that the graph of an equation in two variables is the set of all its solutions plotted on a coordinate plane (I.A.REI.10)
- Explain why the x-coordinate is the solution of the system of equations where \(f(x) = g(x) \) (I.A.REI.11)

Academic Vocabulary

- system of equations, intersection, approximation, root, zero, solution

Resources

Curriculum Resources: https://www.uen.org/core/core.do?courseNum=5630#71607