Supplemental Materials for Standard 3 – Physical Science

The materials on the following pages are supplemental to the core. Each objective in Standard 3 has a sheet of information vital to student learning of science and the scientific processes inherent in the core. They are intended to give guidance to the teacher on the following topics:

- The Big Ideas go beyond discrete facts or skills to focus on larger concepts, principles, or processes (Grant Wiggins and Jay McTighe, *Understanding by Design*, 1998, p. 10). Big Ideas are cumulative, meaning that students revisit ideas that are previously developed, but in more and more complex ways at each successive grade level. This allows teachers to anchor learning at the beginning of the grade level to “concepts and reasoning abilities that young children bring with them” (NRC, 2008).

- Indicators provide both Measureable Outcomes framed by Standard 1 objectives and Big Ideas and measurable indicators of student content knowledge and scientific processing for teachers.

- Science language is the language that students should use when conversing on each objective within the standard. Students may not be expected to spell and read each and every term.

- Guidance for combining Content and Process are suggested strategies teachers may use to teach the core. One-letter abbreviations (L, M, A, S) are included to show how the science learning may be integrated into Language Arts, Mathematics, Arts, and Social Studies concepts. Science content should never be taught as content alone, but should be taught through the process of scientific practice, embedding content into inquiry, hands-on learning, experimentation, interpretation of evidence, and communication of findings. “When students engage in science as practice, they develop knowledge and explanations of the natural world as they generate and interpret evidence.” (Ready, Set, Science: Putting Research to Work in K-8 Science Classrooms, pg. 34)

- According to the National Science Education Standards, it is important to help students “establish connections between the natural and designed worlds.” Guidance for combining Science, Technology, and Society provide support to teachers in this area.

- A key for interpreting the abbreviations used in the supplementary materials is found at the bottom of the page.

Important Note: A guide for reading the supplementary materials is found in Appendix B.
Subject: Science
Grade: First
Standard: 3. Physical Science
Objective: 1. Analyze changes in the movement of non-living things.

<table>
<thead>
<tr>
<th>Content Big Ideas</th>
<th>Standard 1 Big Ideas – Intended Learning Outcomes</th>
<th>Science, Technology, and Society Big Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F) Things move in many different ways, such as straight, zigzag, round and round, back and forth, and fast and slow.</td>
<td>(PoS) People can often learn about things around them by just observing those things carefully, but sometimes they can learn more by doing something to the things and noting what happens (raise questions about the world around them, be willing to seek answers to some of those questions by making careful observations and trying things out).</td>
<td>(T) People use appropriate tools and models to investigate the world.</td>
</tr>
<tr>
<td>(F) The way to change how something is moving is to give it a push or pull.</td>
<td>(CoS) When doing science activities, it is often helpful to work with a team and to share findings with others. In this sharing, describing things as accurately as possible is important in science because it enables people to compare their observations with those of others (draw pictures that correctly portray at least some features of the thing being described, describe and compare things in terms of number, shape, texture, size, weight, color, and motion).</td>
<td>(A) People working alone or in groups often invent new ways to solve problems and get work done.</td>
</tr>
<tr>
<td>(NoS) When people give different descriptions of the same thing, it is usually a good idea to make some fresh observations instead of just arguing about who is right.</td>
<td>(CoS) When doing science activities, it is often helpful to work with a team and to share findings with others. In this sharing, describing things as accurately as possible is important in science because it enables people to compare their observations with those of others (draw pictures that correctly portray at least some features of the thing being described, describe and compare things in terms of number, shape, texture, size, weight, color, and motion).</td>
<td>(S) The tools and ways of doing things that people have invented affect all aspects of life.</td>
</tr>
</tbody>
</table>

Indicators: Measureable Outcomes framed by Standard 1 Big Ideas

Indicator 1. Describe, classify, and communicate observations about the motion of objects, e.g., straight, zigzag, circular, curved, back-and-forth, and fast or slow.

Indicator 2. Compare and contrast the movement of objects using drawings, graphs, and numbers.

Indicator 3. Explain how a push or pull can affect how an object moves.

Science language students should be able to use correctly: motion, zigzag, bar graph, observe, describe.

Guidance for Combining Content and Process

Suggested Strategies

Teachers can guide students in brainstorming the ways to describe the motion of objects. Generate a list of the different ways objects move, use that list as a data collection sheet for each student. Teacher and students can locate and describe the movement of objects in and around the school and record on the data sheet. In groups students discuss their findings with peers. Any differences in observations can be resolved as the teacher helps student consolidate class data and bar graph the number of each of the different motions observed (e.g., 15 windows moving up and down, 10 doors moving back-and-forth, 2 fans moving in circular motion). (L) (M) (PoS) (CoS) (NoS)

Guidance for Combining Science, Technology, and Society

- (T) Students can use age-appropriate tools to learn more about movement.
- (A) Students can explain that motions can be predictable and useful in daily life or when creating tools.
- (S) Students understand that these principles affect many functions in day-to-day living, including transportation, how water gets to the home, etc.

Curriculum Connections

- **Physical Science**
 - Atomic/Molecular: (A)
 - Force and Motion: (F)
- **Curriculum Connections**
 - Mathematics: (M)
 - Language Arts: (L)
 - Fine Arts: (FA)
 - Social Studies: (SS)
- **Processes, Communication, and Nature of Science**
 - Processes of science: (PoS)
 - Communication of science: (CoS)
 - Nature of science: (NoS)
- **Applications: Science, Technology, and Society**
 - Tools of science: (T)
 - Applications of science: (A)
 - Implications of science for people: (S)