Multiple Choice

Study the Utah County weather data chart below and answer the next two questions.

Weather Data

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>93 ° F</td>
<td>87 ° F</td>
<td>82 ° F</td>
<td>80 ° F</td>
<td>95 ° F</td>
</tr>
<tr>
<td>Air Pressure</td>
<td>30 "</td>
<td>30 "</td>
<td>29 "</td>
<td>28 "</td>
<td>30 "</td>
</tr>
<tr>
<td>Wind</td>
<td>5 mph</td>
<td>15 mph</td>
<td>25 mph</td>
<td>10 mph</td>
<td>5 mph</td>
</tr>
<tr>
<td>Clouds</td>
<td>clear</td>
<td>partly cloudy</td>
<td>partly cloudy</td>
<td>cloudy</td>
<td>clear</td>
</tr>
</tbody>
</table>

1. On which day will it most likely rain?
 A. Monday
 B. Tuesday
 C. Wednesday
 D. Thursday

2. Which month of the year might this be?
 A. January
 B. March
 C. June
 D. November

3. A storm is approaching your town. What kind of clouds, temperature, and precipitation can you expect?
 A. cirrus clouds, lower temperatures and rain
 B. cirrus clouds, higher temperatures and rain or snow
 C. cumulus clouds, no temperature change and no rain
 D. stratus clouds, low temperatures and rain
4. The end of a syringe like the one pictured below can be closed with a finger. When the plunger is pushed, it will only go part way. Why?

![Syringe diagram]

A. The plunger gets stuck
B. The syringe is full of air
C. Friction on the sides
D. Gravity stops it

5. Temperature and wind speed are measurements of what substance?

A. air
B. rock
C. water
D. weather

6. Precipitation becomes snow when...

A. the clouds get closer to Earth
B. the clouds get darker
C. air temperature gets colder
D. the wind blows

7. What do cirrus clouds often predict?

A. fair weather
B. a storm
C. no change in weather
D. low or no wind

8. A calm, cloudless day with little wind usually means the next day will have what kind of weather?

A. the same
B. rain
C. severe weather
D. colder, fewer clouds
Use this graph to answer the next two questions.

9. Which time of day is the warmest?
 A. morning
 B. noon
 C. late afternoon
 D. after dark

10. What activity would this graph help you plan?
 A. when to have dinner
 B. what time to wake up
 C. when to do your homework
 D. what time to be outdoors

11. Several days with strong winds from the south usually mean...
 A. it will stay the same
 B. clear skies
 C. hot weather is coming
 D. a storm is likely
Constructed Response

1. Write down what type of clouds are represented by each picture:

 - **fair weather**
 - low clouds

 - **weather change**
 - high clouds

 - **winter weather**
 - low clouds

 - **stormy weather**
 - low and high clouds
2. What weather components such as temperature, precipitation, wind, and clouds would you experience on a warm spring day? Why?

3. What weather data would you need to collect to make an accurate forecast? List four or more.

4. What are two weather clues that show a storm is coming?

5a. Draw a line on the graph using the data below that shows the daily noontime temperatures during the year in Salt Lake City.

![Graph showing monthly temperatures](image)
Answers to Grade 4 Standard 2 Unit Test

Multiple Choice
1. D
2. C
3. D
4. B
5. A
6. C
7. B
8. A
9. C
10. D
11. D

Constructed Response:

1. A. Stratus B. Cirrus C. Cumulus D. Cumulonimbus

2. Answers will vary depending on student tastes. Each should be supported by a statement. Ex: Temperature would be 70 Fº because that is neither too hot or too cold. No rain because I don’t like to get wet. Lots of wind because I like to fly a kite. Etc.

3. Air temperature, humidity, air pressure, wind, cloud cover, precipitation

4. Answer: wind, especially from the south, cirrus clouds, dropping barometer, high humidity

5. Something like this:
Performance Test 1

Title: Collecting Weather Data

Activity Description
Students will collect and record weather data for five consecutive days. Based on data collected and current observations, students will predict weather for the sixth day and write and share a forecast.

Materials Needed
thermometer, anemometer, barometer, rain gauge, wind vane, cloud chart seasonal weather charts, pencil and paper (all weather instruments are not necessary, three would be enough.)

Prior to Assessment
Students should have had experiences with weather concepts relating to air temperature, wind speed, air pressure, weather fronts, humidity, cloud types, precipitation. They should have built and used weather instruments. Students also need experience collecting and reporting data.

Time Needed for Assessment
five ten-minute periods over five consecutive days
one class period (45-60 min) on the fifth day

Procedure
1. Collect and record observable weather data for five consecutive days: temperature, barometric pressure, wind direction and speed, precipitation, cloud type or percent of cloud cover.
2. Use recorded data and seasonal weather charts to predict the weather for the sixth day.
3. Write your prediction in the form of a weather forecast using a newspaper, television or radio format.
4. Share predictions with classmates.

Suggested Scoring Guide:
1. 1 for each piece of data (7 possible) for 5 days.. 35 pts
2. 1 for each piece of data predicted on day 6.. 7 pts
3. Correct sentence structure... 2 pts
4. Verifiable prediction..1 pt
5. Explaining the weather forecast using the collected data... 5 pts

possible 50 pts
Performance Test 2

Title: Recording Weather Data

Activity Description
Students will use recorded weather data and look for simple patterns.

Materials Needed
Graph paper, colored pencils, student sheet

Prior to Assessment
Students should be familiar with how weather is observed and recorded. They should be familiar with precipitation, air temperature, and cloud cover.

Time Needed
45 minutes

Procedure
1. Hand out student sheets and go over directions on graphing with students.
2. After students have graphed data, discuss how graphs may show patterns indicating that one weather factor may be related to another. For example, a cloudy day may be cooler in summer than a clear day because the sun’s rays are blocked. Be careful not to make causal relationships; it may be cloudy because it was cool that day.
3. After you have discussed possible reasons for relationships of one graph to another, allow students time to answer the questions.

Suggested Scoring Guide:
1. Graphs are completed with correctly drawn lines.. 15 pts
2. Questions are correctly answered... 5 pts
 Answers: poss. 20 pts
 1. Wednesday
 2. Wednesday
 3. Wednesday
 4. There was a storm.
Title: Graphing Weather

Introduction: In this activity you will make three graphs of weather factors measured during one week. The graphs create a “picture” of data that helps you see and compare different kinds of data.

Directions:
1. Use the data in the chart below to make three graphs, one for temperature, cloud cover, and rainfall.
2. Use a colored pencil to draw the dots for temperature on the temperature graph. Find the day on the bottom of the graph and go up to the temperature measured to place the dot. Connect them when you are done.
3. Do the same thing for the cloud cover (what percent of the sky is covered by clouds, 100% means the sky was totally covered) and rainfall (measured in inches of rain).
4. Compare the graphs and discuss with your teacher the different ways the graphs are the same and different.
5. Answer the questions.

Data:

Chart

<table>
<thead>
<tr>
<th>Day</th>
<th>Temperature (F)</th>
<th>Cloud Cover (%)</th>
<th>Rainfall (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>75° F</td>
<td>20 %</td>
<td>0</td>
</tr>
<tr>
<td>Tuesday</td>
<td>66° F</td>
<td>35 %</td>
<td>0</td>
</tr>
<tr>
<td>Wednesday</td>
<td>44° F</td>
<td>100 %</td>
<td>.34</td>
</tr>
<tr>
<td>Thursday</td>
<td>50° F</td>
<td>80 %</td>
<td>.05</td>
</tr>
<tr>
<td>Friday</td>
<td>67° F</td>
<td>60 %</td>
<td>0</td>
</tr>
<tr>
<td>Saturday</td>
<td>70° F</td>
<td>20 %</td>
<td>0</td>
</tr>
<tr>
<td>Sunday</td>
<td>78° F</td>
<td>10 %</td>
<td>0</td>
</tr>
</tbody>
</table>
Temperature Graph

Cloud Cover Graph
Questions:

1. What day was coldest?

2. What day had the most clouds?

3. What day had the most rainfall?

4. How would you describe what happened Wednesday?

5. If cloud cover went up, what would you expect temperature and rainfall to do?