Table of Contents

CHAPTER 6: EXPRESSIONS AND EQUATIONS 3
6.0 ANCHOR PROBLEM: 9
6.0 Alternative Anchor Problem: 11
6.0A THE PRoperties of Arithmetic Reference Sheets 13
SECTION 6.1: THE STRUCTURE OF NUMERIC AND ALGEBRAIC EXPRESSIONS 18
6.1a Class Activity: Translating Contexts to Equivalent Numeric Expressions 19
6.1a Homework: Translating Contexts to Equivalent Numeric Expressions 27
6.1b Class Activity: How Many Expressions Can You Make?. 32
6.1b Homework: How Many Expressions Can You Make? 35
6.1c Class Activity: Algebraic Expressions and Equivalence 36
6.1c Homework: Algebraic Expressions and Equivalence. 46
6.1d Class Activity: Transitioning from Numeric Expressions to Algebraic Expressions 54
6.1d Homework: Transitioning from Numeric Expressions to Algebraic Expressions 59
6.1e Self-Assessment: Section 6.1 62
SECTION 6.2: Writing, Simplifying, And Evaluating Algebraic Expressions 69
6.2a Class Activity: Simplifying Algebraic Expressions Part I. 70
6.2a Homework: Simplifying Algebraic Expressions Part I 79
6.2b Class Activity: Numeric Expressions and the Distributive Property 82
6.2b Homework: Numeric Expressions and the Distributive Property 88
6.2c Class Activity: Simplifying Algebraic Expressions Part II. 91
6.2c Homework: Simplifying Algebraic Expressions Part II 98
6.2d Class Activity: Modeling Backwards Distribution (Factoring) 102
6.2d Homework: Modeling Backwards Distribution (Factoring) 104
6.2e Class Activity: Repeated Multiplication and Exponents 106
6.2e Homework: Repeated Multiplication and Exponents 115
6.2f Class Activity: Evaluating Algebraic Expressions 118
6.2f Homework: Evaluating Algebraic Expressions 123
6.2g Class Activity: How Many Expressions Can You Make Part II 126
6.2h Class Activity: Writing Algebraic Expressions to Model Real World Problems 127
6.2h Homework: Writing Algebraic Expressions to Model Real World Problems 133
6.2i Self-Assessment: Section 6.2 136
SECTION 6.3: EQUATIONS AND INEQUALITITIES IN ONE VARIABLE. 144
6.3a Class Activity: Equations and their Solutions 145
6.3 a Homework: Equations and Their Solutions 148
6.3b Class Activity: Working Backwards to Solve Equations 151
6.3 c Class Activity: Constructing and Deconstructing Equations 154
6.3c Homework: Constructing and Deconstructing Equations. 158
6.3d Class Activity: Solving Equations with Whole Numbers 161
6.3d Homework: Solving Equations with Whole Numbers 166
6.3e Class Activity: Solving Equations with Rational Numbers. 167
6.3e Homework: Solving Equations with Rational Numbers 171
6.3f Class Activity: Writing Equations to Solve Real World Problems. 172
6.3f Homework: Writing Equations to Solve Real World Problems 179
6.3 g Class Activity: Solving Percent Problems with Equations 182
6.3 g Homework: Solving Percent Problems with Equations 187
6.3h Class Activity: Understanding the Solution to an Inequality 189
6.3h Homework: Understanding the Solution to an Inequality. 194
6.3i Class Activity: Solving Inequalities. 197
6.3i Homework: Solving Inequalities 200
6.3j Class Activity: Writing and Solving Inequalitites to Represent Real World Problems 201

Chapter 6: Expressions and Equations

Utah Core Standard(s):

- Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$. (6.NS.4)
- Write and evaluate numerical expressions involving whole number exponents. (6.EE.1)
- Write, read, and evaluate expressions in which letters stand for numbers. (6.EE.2)
a) Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as $5-y$.
b) Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c) Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=\frac{1}{2}$.
- Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$. (6.EE.3)
- Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for. (6.EE.4)
- Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. (6.EE.5)
- Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (6.EE.6)
- Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. (6.EE.7)
- Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams. (6.EE.8)

Academic Vocabulary: numeric expression, equivalent numeric expressions, simplify, order of operations, grouping symbols (parentheses, brackets, fraction bar), middle dot \cdot, fraction bar as division: $\frac{a}{b}$ can be interpreted as $a \div b$, algebraic expressions, equivalent algebraic expressions, evaluate, sum, difference, product, quotient, simplified form of an algebraic expression, term, like terms, coefficient, constant, unknown, variable, Commutative Property of Addition/Multiplication, Associative Property of Addition/Multiplication, Distributive Property, Identity Property of Addition/Multiplication, perimeter, area, factor, exponent/power, exponential form, expanded form, base, squared, cubed, equation, solution, solve, substitute, Addition Property of Equality, Subtraction Property of Equality, Multiplication Property of Equality, Division Property of Equality, inverse operations, inequality, number line diagram, constraints, solution set, minimum, maximum, at least, no more than, at most, $<,>, \leq, \geq$

Chapter Overview: This chapter begins by helping students to develop an understanding of equivalent numeric expressions. Students write several expressions to represent a variety of real world problems and observe that the expressions all simplify to the same value. In the process, students are introduced to important notation used in algebra. For example, students come to understand that a middle dot can be used to represent multiplication. Following this, students determine whether two or more algebraic expressions are equivalent. They learn that equivalence can be shown for linear expressions by testing two different values for the variable. Students may begin to surface ideas about the ways expressions can be transformed to create different but equivalent expressions. Following this lesson, students write different but equivalent algebraic expressions to represent real world problems. The lessons are structured so that students start by writing numeric expressions with various numerical inputs. As the inputs change, students identify patterns and processes taking place. They identify the pieces of the expression that are changing and the pieces that are staying the same. They identify the structure of the expressions. This helps them to abstract the expression for any value of the input.

Throughout Section 1, students have been surfacing ideas about how expressions can be transformed to create different but equivalent expressions. In Section 2, students use the properties of operations to transform expressions. The emphasis in this section is on writing different but equivalent expressions, including the simplified form of an expression which takes the form $A x+C$. While students learn how to write expressions in simplest form, the core underscores the importance of using the form that is best suited for the purpose at hand. This will become important for students in subsequent math courses. Students write equivalent expressions by combining like terms in an expression, distributing to write expressions without parentheses, and factoring to write expressions as the product of two factors. This work requires students to operate fluency with positive rational numbers. In the second part of the section, students review exponents as a short-hand way to represent repeated multiplication. They acquire a geometric understanding of expressions containing exponents. Representing expressions geometrically helps students to correctly evaluate expressions for given values of the variable(s) in the lessons that follow. This section concludes with students writing and evaluating algebraic expressions, including expressions arising from formulas, to represent real world problems.

In Section 3, students learn that an equation can be formed by stating an equivalence between two expressions. In Section 2, students evaluated expressions for different values of the variable. In Section 3, students consider the question, "For what values of the variable does an expression evaluate to a specific value?" Students use substitution to determine whether a given number is a solution to an equation. Next, students solve story problems in which they use the problem-solving strategy of working backward to arrive at the answer. This surfaces ideas about the solving process and the role of using inverse operations to find the unknown. In the lesson that follows, students construct equations using the properties of equality and realize that the same properties that allow us to construct an equation are the same properties that allow us to transform the equation back to its simplest form, revealing the solution. In the lessons that follow, students develop fluency with the process involved in solving equations that take the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers. Next, students solve real-world and mathematical problems by writing and solving equations. Finally, students write inequalities to represent a constraint or condition in a real-world or mathematical problem. They compare inequalities to equations and realize that while equations and inequalities are solved using a similar process, inequalities often have infinitely many solutions. Students learn to represent these solutions to inequalities on number line diagrams.

Connections to Content:

Prior Knowledge: In previous grades, students worked with the properties of operations with whole numbers, fractions, and decimals. In $5^{\text {th }}$ grade, students learned how to use whole number exponents to represent powers of ten. Students have been writing numerical expressions throughout their elementary course work.
Additionally, students have been writing and solving equations, representing the unknown with question marks, boxes, and letters. Many of the examples used in the problems in this Chapter rely on previous work done in $6^{\text {th }}$ grade. For example, students learned about the area formulas for polygons in Chapter 5. Students also rely on their understanding of percent, statistics, and many other domains studied earlier in the year.

Future Knowledge: In $7^{\text {th }}$ grade, students will encounter expressions with positive and negative rational numbers. As coursework progresses, students will write expressions to model different types of functions such as exponential and quadratic functions. Being able to examine numeric expressions and identify and abstract patterns is an important part of being able to write explicit rules to model a function. In later grades, students will see more complex equations. In $7^{\text {th }}$ and $8^{\text {th }}$ grade, students see equations that involve multiple steps to reach a solution and encounter equations with no solution and infinitely many solutions. Students also go on to solve different types of equations such as quadratic and exponential equations and rely on the understanding what it means to solve an equation and the role inverse operations play in the solving process. In $8^{\text {th }}$ grade, students will be introduced to negative exponents and the exponent properties.
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Desiree is making a flag in the shape of a triangle for a parade float. To } \\ \text { fit on the float, the area of the flag can be no more than } 600 \text { square } \\ \text { inches. She has decided to make the height of the flag equal to } 3 \frac{1}{2} \text { feet. } \\ \text { Write an inequality to represent possible lengths for the base of the flag. } \\ \text { bs } 28.571428\end{array} \\ \begin{array}{l}\text { Make sense of } \\ \text { problems and } \\ \text { persevere in } \\ \text { solving them. }\end{array} & \begin{array}{l}\text { When students are solving inequalities, they need to be able to interpret } \\ \text { the solution. Mathematically, the solution above tells us that the base } \\ \text { can be any length } 5 \\ \text { likely that someone would measure to this degree of precision. It is more } \\ \text { likely that this person would measure to the nearest inch or half inch. In } \\ \text { the problem above, students might reason that Desiree would make the } \\ \text { base of the flag } 28 \text { inches or } 28.5 \text { inches. In similar problems, the } \\ \text { quantities being considered are whole objects, such as people. Students } \\ \text { take this into consideration when considering solutions to the problem. }\end{array} \\ \hline \text { Reter is checking his suitcase at the airport. He puts it on the scale and } \\ \text { the person working at the counter tells him that his bag weighs } 1 \frac{1}{2} \text { times } \\ \text { the weight limit for checked baggage. If Peter's bag weighs } 75 \text { pounds, } \\ \text { what is the weight limit for checked bags? } \\ \text { Throughout this chapter, students are transitioning to a more abstract } \\ \text { way of thinking. In the problem above, students are asked to write and } \\ \text { solve an equation for the problem given. Teachers and students are } \\ \text { encouraged to use numeric examples and models to arrive at the } \\ \text { equation or symbolic representation of the situation. }\end{array}\right\}$

	Construct viable arguments and critique the reasoning of others.	Write three expressions that are equivalent to the expression $x+x+4(x+3)$. Throughout the chapter, students are asked to justify the process used to write equivalent algebraic expressions. What properties allow them to transform the expression? How can they show the two expressions are equivalent? Students consider equivalent expressions written by classmates and determine whether they agree the expressions are equivalent. When solving equations, students must justify the properties of equality that allow them to transform the equation to its simplest form to reveal the solution.
	Model with mathematics.	You must be at least 46 inches tall to ride the roller coasters at an amusement park. Owen is currently $43 \frac{1}{2}$ inches tall. Write and solve an inequality to show the amount Owen must grow to be tall enough to ride the roller coasters at the amusement park. Throughout the chapter, students are applying the math they are learning to solve real world problems. When considering a problem, they think, "What am I given? What do I need to know? Are there constraints I need to consider? Does my answer make sense?" They create pictures, models, numeric expressions, algebraic expressions, equations, and inequalities to represent and solve real world problems. For the problem above, students might start by testing values: What if Owen grows 2 inches taller? 3 inches taller? At what point is he just tall enough? What if he grows more than he needs to?
\leftrightarrows	Use appropriate tools strategically.	Students use area models as a tool throughout the chapter to better understand the structure of expressions. This understanding helps them to transform and evaluate expressions. For example, students explore the difference between the expressions $3 x+2,3(x+2)$, and $3(2 x)$ using area models. The first is a rectangle with dimensions of 1 and $3 x+2$, the second a rectangle with dimensions of 3 and $x+2$, and the third a rectangle with dimensions 3 and $2 x$. Examining these different area models helps students to see why the second expression can be written as $3 x+6$ and the third expression can be written as $6 x$.

Inlılila	Attend to precision.	Evaluate the expressions when $r=12, s=2$, and $t=5$. $\begin{aligned} & 4 t^{2}+3 t^{2} \\ & 5 r-s^{3}+2 \\ & \frac{t-s}{r} \end{aligned}$ When evaluating expressions with exponents there are many details for students to consider. In the first expression, what is the operation between the 4 and t^{2} ? Do I multiply t by 4 and then square the result or do I square t first and then multiply the result by 4? What does it mean to square a number? Am I following the order of operations? Do I know and understand the different grouping symbols? Am I computing correctly, particularly when fractions and decimals are involved?
	Look for and make use of structure.	Students use structure throughout the chapter when they write algebraic expressions. For example, students consider the expression "three copies of the sum of twice a number and seven" in word form and translate it to a symbolic representation: $3(2 x+7)$. To write this symbolically, students consider the sum of twice a number and seven as an object held together with parentheses. This also helps students to understand why an equivalent expression is $6 x+21$. The expression $3(2 x+7)$ can be re-written as $(2 x+7)+(2 x+7)+(2 x+7)$ and then by the Commutative Property of Addition written as $2 x+2 x+$ $2 x+7+7+7$ and finally $6 x+21$. Students create area models to understand the structure of the expressions with exponents such as $2 x^{2}$ and $(2 x)^{2}$. In the first expression, students create a square with a side length of x . Then, they duplicate that square to show two copies of it. In the second expression, students first double a length x and then create a square with a side length of $2 x$ which they realize has an area of $4 x^{2}$. Representing these expressions geometrically helps students to correctly evaluate the expressions for given values of x.
	Look for and express regularity in repeated reasoning.	Marin has 50 tickets to spend on rides at a carnival. Each ride takes 6 tickets. Write different expressions to represent the number of tickets Marin has left based on the number of rides she goes on. Students first consider this problem numerically. What if Marin goes on two rides? Three rides? Four rides? While writing numeric expressions, students begin to identify patterns in the expressions. What is changing? What is staying the same? This allows students to write an expression to represent the number of tickets Marin has remaining when she goes on r rides.

6.0 Anchor Problem:

욤울
A local charity has a benefit to raise money. You are on the planning committee and have been tasked to determine the number of tickets that must be sold for the charity to raise at least $\$ 5,000$ after all expenses have been covered.

Here is some other information that may be helpful to you while working on this task.

- Attendees purchase tickets to attend the event. The price of the ticket includes dinner, a selection of mini desserts, and dancing.
- The event is from 6:30 pm - 10:30 pm.
- The cost of a ticket to attend the event is $\$ 90$. Included in the cost of the ticket is dinner and a selection of mini desserts.
- The caterer for the event charges $\$ 40$ for each dinner. You need to purchase a dinner for everyone attending the event plus fifteen additional dinners for volunteers. Volunteers do not pay for their dinner.
- Based on experience, you have determined that each person takes on average 2.5 mini-desserts. Each dessert costs \$1.50.
- 8 people can sit at each table. In addition to tables for the guests, the committee will set up two additional tables for the volunteers.
- The decorating committee has decided to put 2 vases of flowers and 4 votive candles on every table for decoration. Each vase of flowers costs $\$ 4.50$ and each votive candle costs $\$ 0.90$.
- You have chosen a DJ to play music at the event. The DJ charges $\$ 125$ per hour to play music. The DJ will play music for the entire time the event is going on.
- The committee is buying party favors to give out as people leave the event. In the past, less than 75% of the guests have taken party favors. Based on this data, you have decided to buy party favors for exactly 75% of the guests. Each party favor costs $\$ 3.00$.

6.0 Alternative Anchor Problem:

Part 1: The side length of a square is unknown.
a. Write an expression for the perimeter of the square.
b. Write an expression for the area of the square.
c. Write an expression to show the perimeter of 3 copies of the square. Assume the squares are not touching.
d. Write an expression to show the area of 3 copies of the square.
e. The side length of the square from above is tripled. Write an expression for the new perimeter of the square. Compare the perimeter of the new square to the perimeter of the original square.
f. Write an expression for the new area of the square. Compare the area of the new square to the area of the original square.

6.0a The Properties of Arithmetic Reference Sheets

Section 6.1: The Structure of Numeric and Algebraic Expressions

Section Overview:

This section begins with students writing several different but equivalent numeric expressions to represent realworld problems. This process surfaces ideas about equivalence. It also provides a nice opportunity to review several of the concepts studied throughout the year, including operations with positive rational numbers, ratio problems, percent problems, perimeter and area problems, and statistics problems. Additionally, students review and practice simplifying numeric expressions with grouping symbols, remembering to follow the order of operations. Students are then introduced to algebraic expressions and learn how to determine whether two or more algebraic expressions are equivalent. In the last lesson, students write algebraic expressions to represent real world problems. Identifying patterns and making sense of the structure of the expressions helps students as they transition from numeric to abstract representations of real world problems.

Concepts and Skills to Master:

By the end of this section, students should be able to:

1. Write different but equivalent numeric expressions to represent a real-world problem using grouping and operator symbols correctly (parentheses, fraction bars, middle dot, etc.).
2. Determine whether two or more numeric expressions are equivalent by correctly simplifying the expressions (follow order of operations, recognize and interpret grouping symbols and operator symbols, etc.)
3. Determine whether two or more algebraic expressions are equivalent by evaluating the expressions for specific values of the variable.
4. Translate the word form of an algebraic expression to its symbolic representation and vice versa. Use and understand academic vocabulary.
5. Recognize and interpret patterns and structure in numeric expressions and use this understanding to write algebraic expressions.

6.1a Class Activity: Translating Contexts to Equivalent Numeric Expressions

Directions: Write as many expressions as you can to represent each context below. Then, simplify the expressions to determine whether they "work" or "don't work".

1. Shannon makes $\$ 8$ an hour babysitting. How much does Shannon make for 3 hours of babysitting?

2. Carmen has 420 tickets to spend at the prize counter at an arcade. She buys 3 packs of Nerds that cost 50 tickets each. How many tickets does Carmen have left?

3. The second-grade class at Granite Elementary sold 80 raffle tickets one week. The third-grade class sold three times as many tickets as the second-grade class. How many tickets did the third-grade class sell?

	Expression	Simplified Form	Does it work?	Ideas
a.				
b.				
c.				
d.				

4. Use the information from the previous problem to determine the total number of tickets sold by the second- and third-grade classes.

5. Ariana and Yesenia are twin sisters selling girl scout cookies. Ariana sells 50 boxes of girl scout cookies. Yesenia sells half as many boxes as her sister. How many boxes of girl scout cookies did the girls sell all together?

6. A rectangle has a length of 30 inches and a height of 15 inches. What is the perimeter of the rectangle?

7. One base of a trapezoid measures 10 centimeters. The other base measures 8 centimeters. The height of the trapezoid is 7 centimeters. What is the area of the trapezoid?

	Expression	Simplified Form	Does it work?	Ideas
a.				
b.				
c.				
d.				
e.				

8. Matt makes $\$ 450$ from mowing lawns over the summer and $\$ 350$ babysitting. Matt saves 30% of the money he makes. How much does Matt save over the summer?

9. Antony made two 3-pointers and six 2-pointers at his basketball game. How many points did Antony score?

	Expression	Simplified Form	Does it work?	Ideas
a.				
b.				
c.				
d.				

10. Gary bought 3 pounds of turkey for $\$ 8.99$ per pound and 3 pounds of ham for $\$ 5.99$ per pound for a work picnic. How much did Gary spend on lunch meat for the picnic?

	Expression	Simplified Form	Does it work?	Ideas
a.				
b.				
c.				
d.				

11. Nancy gave her niece 4 dollars, 4 dimes, and 4 pennies. How much money did Nancy give her niece?

12. At a neighborhood egg hunt, there are 25 solid color eggs and 35 decorative eggs. The eggs are divided evenly between the 10 children at the egg hunt. How many eggs does each child get?

13. Brian tips 20% on a bill of $\$ 45$. How much does Brian leave for a tip?

14. Lorenzo scores a 98%, an 89%, a 93%, and a 90% on his four science tests one quarter. What is the mean of Lorenzo's test scores?

15. Xander buys a paddle board that costs $\$ 450$ and a wetsuit that costs $\$ 190$. The sales tax rate is 6%. How much will Xander pay in sales tax?

16 . Find 58% of 20 .

Directions: Write a story to match the numeric expression given. Then, answer the question.
17. 40(10)
\qquad
\qquad
18. $125-2(50)$ \qquad
\qquad
\qquad
19. $2(12)+2(10)$ \qquad
\qquad
\qquad
20. 0.8(45)
\qquad
\qquad
21. $\frac{2+0+1+2+3+1+1+1+0+1}{10}$
\qquad
\qquad
22. $(0.1)(25)+\frac{0.1(25)}{2}$

Spiral Review

1. Which property is being illustrated in each problem below?

a. $3+5=5+3$	b. $\left(\frac{1}{2}\right)(9)(14)=\left(\frac{1}{2}\right)(14)(9)$
c. $5 \cdot 0=0$	d. $3(14)=3(10+4)$

2. Simplify the expressions.

a. $4+2 \times 3$	b. $(4+2) \times 3$
c. $20 \div 5(2)$	d. $20 \div(5 \cdot 2)$

3. What is the value of 10^{3} ?
4. Write the prime factorization for 8.

6.1a Homework: Translating Contexts to Equivalent Numeric Expressions

Directions: Determine whether the expressions given for each problem "work" or "don't work". If an expression does not work, provide a justification for why it is incorrect. If you can come up with additional expressions that work, write them in the ideas column.

1. Lily had $\$ 150$ in her savings account at the start of the month. She saved $\$ 60$ a week for 4 weeks. How much does Lily have in her savings account now?

	Expression	Simplified Form	Does it work?	Ideas
a.	$150+60$			
b.	$150+60+60+60+60$			
c.	150 + 4(60)			
d.	$150+4+60$			

2. Max takes $\$ 100$ to a sporting goods store to buy baseball pants. He buys two pairs of baseball pants that each cost $\$ 29.99$. How much money does Max have left?

3. Gia is seven years younger than her cousin Nick. If Nick is thirteen years old, what is the sum of Nick and Gia's ages?
a.

Expression	Simplified Form	Does it work?	Ideas
$13+6$			
$13+(13-7)$			
$(13-7)+13$			
$13+7$			

4. The side length of a square is 6 inches. What is the perimeter of the square?
a

Expression	Simplified Form	Does it work?	Ideas
$6+6+6+6$			
4(6)			
$6 \cdot 6$			
$2(6)+2(6)$			

5. The base of a triangle measure 3 feet. The height of the triangle measures 6 feet. What is the area of the triangle?

	Expression	Simplified Form	Does it work?	Ideas
a.	2(3)(6)			
b.	$\frac{3(6)}{2}$			
c.	$\frac{1}{2}(3 \cdot 6)$			
d.	$\frac{1}{2} \cdot 6 \cdot 3$			

6. Giselle completes 20 math problems in 5 minutes. How many problems does Giselle complete in 3 minutes?
a.

Expression	Simplified Form	Does it work?	Ideas		
$3\left(\frac{20}{5}\right)$					
$\frac{20}{5}+\frac{20}{5}+\frac{20}{5}$					
$4+4+4$					
$3(4)$					

7. I bought two toy cars for $\$ 5$ each and three toy trucks for $\$ 7$ each. How much money did I spend?
a.

Expression	Simplified Form	Does it work?	Ideas
$2(5)+3(7)$			
$2(7)+3(5)$			
$(2+3)(5+7)$			
$(5+5)+(7+7+7)$			

8. A football team scored three touchdowns, two field goals, and two extra points. How many points did the football team score? (Hint: a touchdown is 6 points, a field goal is 3 points, and an extra point is 1 point)
a.

Expression	Simplified Form	Does it work?	Ideas
$3(6)+2(3)+2(1)$			
$6+6+6+3+3+1+1$			
$(6+6+6)(3+3)(1+1)$			
$18+6+2$			

9. 25% of the students in Marina's class play a musical instrument. If there are 32 students in Marina's class, how many play an instrument?
a.

Expression	Simplified Form	Does it work?	Ideas
$0.25+32$			
$0.25(32)$			
$\frac{1}{4}(32)$			
$\frac{32}{4}$			

Directions: Write a context to match the numeric expression given. Then, evaluate each expression to answer the question.
10. $4 \cdot 8$ \qquad
\qquad
\qquad
$11.10-3(0.75)-2(0.50)$ \qquad
\qquad
\qquad
12. $0.2(32)+0.2(28)$ \qquad
\qquad
\qquad
13. $40+6(25)$ \qquad
\qquad
\qquad
14. $\frac{(7)(4)}{2}$ \qquad
\qquad
\qquad
15. $\frac{1}{2}(45+60)$
\qquad
\qquad
16. $0.1(50)+(0.01)(50)+(0.01)(50)$
17. 2(3•12)

6.1b Class Activity: How Many Expressions Can You Make?

Directions: Working in a group, try to write as many different numeric expressions as you can to represent each context

Round 1: I bought 2 toy cars for $\$ 1.25$ each and 3 toy trucks for $\$ 1.70$ each. How much did I spend?

Round 2: I had \$12. Then I spent $\$ 2.15$ a day for 5 days in a row. How much money do I have now?

Round 3: I bought five apples for $\$ 0.30$ each and five oranges for $\$ 0.35$ each. How much money did I spend?

Round 4: A rectangular garden has a length of 10 feet and a width of 6 feet. What is the perimeter of the garden?

Round 5: According to a study, 15\% of adolescents get the recommended amount of sleep ($8-10$ hours) each night. At Jenna's middle school, there are one hundred twenty $6^{\text {th }}$ graders, ninety-four $7^{\text {th }}$ graders, and one hundred six $8^{\text {th }}$ graders. Using the number from the study, how many students at Jenna's school would we expect to get the recommended amount of sleep each night?

Round 6: Nathan is a waiter. He made $\$ 165$ in tips on Saturday night and $\$ 80$ in tips on Sunday night. He must pay 10% of what he earns in tips to the people who bus the tables. How much must Nathan pay out to the people who bus the tables at the end of the weekend?

Round 7: Uncle Aaron gave 3 dimes, 2 nickels, and 5 pennies to each of his two nephews. How much money did he give away?

Round 8: Jess and his two friends, Kyle and Jayden, are trick-or-treating. They have decided to split their candy evenly at the end of the night. Jess collects 63 pieces of candy, Kyle collects 57 pieces of candy, and Jayden collects 66 pieces of candy. How many pieces of candy will each person get?

Spiral Review

1. Simplify.

a. $\frac{30}{5}$	b. $\frac{5}{30}$
c. $\frac{6}{10}$	d. $\frac{10}{6}$

2. Simplify the expressions.

a. $5 \cdot 8-10 \div 2$	b. $48-3 \cdot 5+2$
c. $\frac{8+4}{3}$	d. $9-32 \div 4$

3. What is the value of 2×10^{3} ?
4. What are the common factors of 8 and 20 ? What is the greatest common factor of 8 and 20 ?

6.1b Homework: How Many Expressions Can You Make?

Directions: Come up with at least two different expressions to represent each context. Then, simplify the expressions.

1. I earned $\$ 6$. Then, I bought 4 candy bars for $\$ 0.75$ each. How much money do I have left?
2. Cara bought two candles for $\$ 3$ each and three books for $\$ 7$ each. How much did she spend on her purchases?
3. Mona and Teresa worked together to make $\$ 118$ selling phone covers and $\$ 354$ fixing computers. If they split the money evenly between the two of them, how much money did they each make?
4. Jack makes 60% of the free throws he shoots. If he shot 5 free throws in his first game, 8 free throws in his second game, and 2 free throws in his third game, how many free throws would you expect that he made?
5. Marcela bought 5 cheese pizzas and 5 pepperoni pizzas for a soccer team party. If the cheese pizzas each cost $\$ 8.99$ and the pepperoni pizzas each cost $\$ 11.99$, how much did Marcela spend on pizza for the team party?

6.1c Class Activity: Algebraic Expressions and Equivalence

Activity 1: Variables - What are They and How Do We Use Them?
n\#
a. Letters to Represent Unknowns: You have seen symbols being used to represent unknown quantities in expressions and equations for many years. Early on, unknown quantities were represented by question marks and boxes. Later, letters were used to represent unknown quantities. Do the following problems look familiar?
$5+?=11$
$4 \times \square=12$
$300 \div x=3$
? $=$ \qquad
$\square=$ \qquad
$x=$ \qquad
b. Variables to Communicate Mathematical Ideas: You have also seen letters used to communicate mathematical ideas, such as the Properties of Addition and Multiplication. For example, we can state the Commutative Property of Addition using words:

Commutative Property of Addition: Changing the order of the addends in an addition problem does not change the result.

We can also illustrate the Commutative Property of Addition using letters and symbols:
Commutative Property of Addition: $a+b=b+a$
We also see letters in geometry formulas. For example, we can state the formula for the area of a triangle using words:

Area of a Triangle: Multiply the base and the height of the triangle and then divide the result by two.
We can also show this formula using letters and symbols:
$A=\frac{b \times h}{2}$
c. Variables to Show Relationships Between Quantities: We have also seen variables being used to represent relationships between two quantities. For example, we can express how to change feet into inches using words:

To find the number of inches in a specified number of feet, multiply the number of feet by 12 .
We can also show this relationship using letters and symbols:
$i=12 f$
In this case, we may treat one of the variables as an unknown. For example, we may ask, "How many inches are in 3 feet?" In this case, i is an unknown number and we can determine that it is equal to 36 . Alternatively, we can treat the variables as a set of numbers and examine how one variable changes as the other changes. I may want to know how many inches are in 1 foot, 2 feet, 3 feet, 4 feet, and 5 feet.

Activity 2: In the previous lesson, we saw different but equivalent ways to write numeric expressions to represent real world situations. Numeric expressions are a shorthand way to describe a process - they consist of numbers, operations, and grouping symbols. Equivalent numeric expressions simplify to the same number. For example,

- 3(8) and $8+8+8$ are equivalent numeric expressions because they both simplify to 24
- $420-3 \cdot 50,420-50-50-50$, and $420-(50+50+50)$ are equivalent numeric expressions because they all simplify to 270
- $30+15+30+15,2(30)+2(15)$, and $2(30+15)$ are equivalent numeric expressions because they all simplify to 90 .

What about algebraic expressions? Like numeric expressions, algebraic expressions are a shorthand way to describe a process and consist of numbers, operations, and grouping symbols. Algebraic expressions also contain one or more variables. So, how can we tell if two or more algebraic expressions are equivalent? For example, how do we know if the expression $x+5$ is equivalent to $5+x$ or if the expression $\frac{n}{4}$ is equivalent to $\frac{4}{n}$?

Equivalent algebraic expressions simplify to the same number regardless of which value is substituted into them. In the examples above, $x+5$ and $5+x$ are equivalent algebraic expressions. We can substitute in any value for x and the expressions will simplify to the same number. Substituting in a specific number for the variable in an expression and simplifying the expression is called evaluating the expression.

	$\boldsymbol{x}+\mathbf{5}$	$\mathbf{5}+\boldsymbol{x}$
Let $\boldsymbol{x}=\mathbf{2}$	$2+5=7$	$5+2=7$
Let $\boldsymbol{x}=\mathbf{1 3}$	$13+5=18$	$5+13=18$

You can see that when $x=2$ both expressions simplify to 7 and when $x=13$ both expressions simplify to 18 .
Expressions that are NOT equivalent: What about the expressions $\frac{n}{4}$ and $\frac{4}{n}$? Let's test a few values to see if the expressions are equivalent. Just looking at these expressions, we might assume that the expressions are not equivalent because the dividend and divisor have been switched and we know that division is not commutative. Let's test a few values to verify our thinking:

	$\frac{n}{4}$	$\frac{4}{n}$
Let $\boldsymbol{n}=\mathbf{4}$	$\frac{4}{4}=1$	$\frac{4}{4}=1$
Let $\boldsymbol{n}=\mathbf{8}$	$\frac{8}{4}=2$	$\frac{4}{8}=\frac{1}{2}$

When $n=4$, the expressions evaluate to the same number; however, when $n=8$ they do not. This example shows us the importance of testing at least two values to determine equivalence. If we can find one number that causes the expressions to simplify to different values when substituted for the variable, then we can show that the expressions are not equivalent.

Directions: In each of the problems shown, two algebraic expressions are shown. Determine whether the expressions are equivalent or not equivalent.
a. Equivalent or Not? \qquad
Helpful Hint: Putting a number side by side with a variable, as in the expression $3 x$, is a shorthand way of expressing multiplication. So, the expression $3 x$ means 3 multiplied by x or $3 \times x$. Since the symbol \times is often confused with the variable x, we can also use a middle dot or parentheses to represent multiplication. So, $3 x$ can also be written as $3 \cdot x$ or $3(x)$.

	$x+3$	$3 x$
Let $\boldsymbol{x}=\mathbf{0}$		
Let $\boldsymbol{x}=\mathbf{2}$		

b. Equivalent or Not?

	$3 x$	$x \cdot x \cdot x$
Let $\boldsymbol{x}=\mathbf{0}$		
Let $\boldsymbol{x}=\mathbf{2}$		

c. Equivalent or Not?

	$3 x$	$x+x+x$
Let $\boldsymbol{x}=\mathbf{0}$		
Let $\boldsymbol{x}=\mathbf{2}$		

d. Equivalent or Not? \qquad

	$5+c+c+c$	$5+3 c$
Let $\boldsymbol{c}=\mathbf{2}$		
Let $\boldsymbol{c}=\mathbf{3}$		

e. Equivalent or Not? \qquad

	$5+3 c$	$8 c$
Let $\boldsymbol{c}=\mathbf{2}$		
Let $\boldsymbol{c}=\mathbf{3}$		

f. Equivalent or Not?

Helpful Hint: One way to interpret a fraction is to view it as the numerator divided by the denominator. So, the fraction $\frac{a}{b}$ can be thought of as $a \div b$.

	$\frac{x}{10}+3$	$\frac{1}{10}(x+30)$
Let $\boldsymbol{x}=\mathbf{2 0}$		
Let $\boldsymbol{x}=\mathbf{5 0}$		

g. Equivalent or Not? \qquad

	$\frac{1}{10}(x+30)$	$\frac{1}{10}(x)+\frac{1}{10}(30)$
Let $\boldsymbol{x}=\mathbf{2 0}$		
Let $\boldsymbol{x}=\mathbf{5 0}$		

h. Equivalent or Not? \qquad

	$\frac{1}{10}(x+30)$	$\frac{x+30}{10}$
Let $\boldsymbol{x}=\mathbf{2 0}$		
Let $\boldsymbol{x}=\mathbf{5 0}$		

i. Equivalent or Not? \qquad

	$4 n+2 n$	$6 \cdot n \cdot n$
Let $\boldsymbol{n}=\mathbf{5}$		
Let $\boldsymbol{n}=\mathbf{1 0}$		

j. Equivalent or Not? \qquad

	$4 n+2 n$	$(4+2) n$
Let $\boldsymbol{n}=\mathbf{5}$		
Let $\boldsymbol{n}=\mathbf{1 0}$		

k. Equivalent or Not? \qquad

	$4 n+2 n$	$6 n$
Let $\boldsymbol{n}=\mathbf{5}$		
Let $\boldsymbol{n}=\mathbf{1 0}$		

1. Equivalent or Not?

	$2(x+3)$	$2 x+3$
Let $\boldsymbol{x}=\mathbf{1}$		
Let $\boldsymbol{x}=\mathbf{5}$		

m. Equivalent or Not?

	$2(x+3)$	$2 x+2 \cdot 3$
Let $\boldsymbol{x}=\mathbf{1}$		
Let $\boldsymbol{x}=\mathbf{5}$		

n. Equivalent or Not? \qquad

	$2(x+3)$	$(x+3)+(x+3)$
Let $\boldsymbol{x}=\mathbf{1}$		
Let $\boldsymbol{x}=\mathbf{5}$		

Activity 3: Write an algebraic expression for each phrase.
a. The sum of a number n and twenty
b. The sum of twenty and a number n
c. Four less than a number
d. A number c less than four
e. The quotient of a number n and three
f. The quotient of three and a number n
g. The difference of twice a number x and five
h. The difference of five and twice a number x
i. Twice the difference of a number x and five
j. Four times the sum of a number n and six
k. The sum of four times a number n and six

1. The sum of eight and the product of two and a number x
m. Are the expressions you wrote for parts a and b equivalent? Justify your answer.
n. Are the expressions you wrote for parts c and d equivalent? Justify your answer.
o. Are the expressions you wrote for parts e and f equivalent? Justify your answer.
p. Are the expressions you wrote for parts $g-i$ equivalent? Justify your answer.
q. Are the expressions you wrote for parts j and k equivalent? Justify your answer.

Activity 4: Write a phrase for each algebraic expression.

1. $x+8$
2. $14-n$
3. $2(n+3)$
4. $2 n+3$
5. $\frac{15}{y}$
6. $\frac{y}{15}$
7. $\frac{x}{20}+4$
8. $\frac{x+4}{20}$
9. $3 x+5$

Spiral Review

1. Simplify.

a. $\frac{3+7}{9-4}$	b. $\frac{9-4}{3+7}$

2. Find the perimeter of a rectangle with a length of 7 inches and a width of 5 inches.
3. Find the mean of the data set $\{12,22,16,12,14\}$.
4. Find the volume of a cube with a side length equal to 3 inches.

6.1c Homework: Algebraic Expressions and Equivalence

Directions: In each of the problems shown, two algebraic expressions are shown. Determine whether the expressions are equivalent or not equivalent.

1. Equivalent or Not?

	$x+x+x+x$	$4 \cdot x \cdot x \cdot x \cdot x$
Let $\boldsymbol{x}=\mathbf{1}$		
Let $\boldsymbol{x}=\mathbf{2}$		

2. Equivalent or Not?

	$x+x+x+x$	$4 x$
Let $\boldsymbol{x}=\mathbf{1}$		
Let $\boldsymbol{x}=\mathbf{2}$		

3. Equivalent or Not? \qquad

	$4 x$	$2 x+2 x$
Let $\boldsymbol{x}=\mathbf{2 0}$		
Let $\boldsymbol{x}=\mathbf{3 0}$		

4. Equivalent or Not? \qquad

	$4 \cdot 2 x$	$6 x$
Let $\boldsymbol{x}=\mathbf{3}$		
Let $\boldsymbol{x}=\mathbf{4}$		

5. Equivalent or Not? \qquad

	$4 \cdot 2 x$	$8 x$
Let $\boldsymbol{x}=\mathbf{3}$		
Let $\boldsymbol{x}=\mathbf{4}$		

6. Equivalent or Not?

	$(2 x)+(2 x)+(2 x)+(2 x)$	$4 \cdot 2 x$
Let $\boldsymbol{x}=\mathbf{3}$		
Let $\boldsymbol{x}=\mathbf{4}$		

7. Equivalent or Not? \qquad

	$\frac{x}{2}-8$	$\frac{1}{2} x-8$
Let $\boldsymbol{x}=\mathbf{2 0}$		
Let $\boldsymbol{x}=\mathbf{3 0}$		

8. Equivalent or Not? \qquad

	$\frac{1}{2} x-8$	$\frac{1}{2}(x-16)$
Let $\boldsymbol{x}=\mathbf{2 0}$		
Let $\boldsymbol{x}=\mathbf{3 0}$		

9. Equivalent or Not? \qquad

	$\frac{1}{2}(x-16)$	$\frac{x-16}{2}$
Let $\boldsymbol{x}=\mathbf{2 0}$		
Let $\boldsymbol{x}=\mathbf{3 0}$		

10. Equivalent or Not? \qquad

	$30-n-n-n$	$30-3 n$
Let $\boldsymbol{n}=\mathbf{2}$		
Let $\boldsymbol{n}=\mathbf{5}$		

11. Equivalent or Not? \qquad

	$30-n-n-n$	$30-(n+n+n)$
Let $\boldsymbol{n}=\mathbf{2}$		
Let $\boldsymbol{n}=\mathbf{5}$		

12. Equivalent or Not? \qquad

Evaluate	$30-(n+n+n)$	$30-n+n+n$
Let $\boldsymbol{n}=\mathbf{2}$		
Let $\boldsymbol{n}=\mathbf{5}$		

13. Equivalent or Not? \qquad

	$0.2(x)$	$0.1(x)+0.1(x)$
Let $\boldsymbol{x}=\mathbf{5 0}$		
Let $\boldsymbol{x}=\mathbf{1 0 0}$		

14. Equivalent or Not? \qquad

	$0.2(x)$	$\frac{2 x}{10}$
Let $\boldsymbol{x}=\mathbf{5 0}$		
Let $\boldsymbol{x}=\mathbf{1 0 0}$		

15. Equivalent or Not? \qquad

	$\frac{2 x}{10}$	$\frac{x+x}{10}$
Let $\boldsymbol{x}=\mathbf{5 0}$		
Let $\boldsymbol{x}=\mathbf{1 0 0}$		

16. Equivalent or Not? \qquad

	$10 y-8 y$	$2 y$
Let $\boldsymbol{y}=\mathbf{5}$		
Let $\boldsymbol{y}=\mathbf{8}$		

17. Equivalent or Not? \qquad

	$10 y-8 y$	$10 y-4 y+4 y$
Let $\boldsymbol{y}=\mathbf{5}$		
Let $\boldsymbol{y}=\mathbf{8}$		

18. Equivalent or Not? \qquad

	$10 y-8 y$	2
Let $\boldsymbol{y}=\mathbf{5}$		
Let $\boldsymbol{y}=\mathbf{8}$		

Directions: Write an algebraic expression for each phrase.
19. A number j increased by four
20. The quotient of five and a number x
21. Ten less than three times a number y
22. The product of a number n and one-third
23. The quotient of the sum of a number b and seven and two
24. A number k decreased by four
25. A number four decreased by k
26. Four more than the quotient of a number x and three
27. The quotient of four more than a number x and three
28. Seventeen minus the product of seventy-five hundredths and a number n
29. Are the expressions in \#26 and \#27 equivalent? Justify your answer.
30. Write an expression that is equivalent to the expression in \#26?
31. Write an expression that is equivalent to the expression in \#27?

Directions: Write a phrase for each algebraic expression.
32. $x-7$
33. $7-x$
34. $15-2 x$
35. $2 x-15$

6.1d Class Activity: Transitioning from Numeric Expressions to Algebraic Expressions

Directions: For each situation, complete the table to show several different expressions to represent the situation.

a. Maria bought 5 apples at the store. Write different expressions to represent the total cost of the apples based on the price of the apples.

Cost of Each Apple	Total Cost of Apples Expression 1	Total Cost of Apples Expression 2	Total Cost of Apples Expression 3
$\$ 0.35$			
$\$ 0.40$			
c			

b. Write different expressions to represent the perimeter of a square based on the side length of the square.

Side Length of the Square (units)	Perimeter of Square (units) Expression 1	Perimeter of Square (units) Expression 2	Perimeter of Square (units) Expression 3
5			
8			
s			

c. Marin has 50 tickets to spend on rides at a carnival. Each ride takes 6 tickets. Write different expressions to represent the number of tickets Marin has left based on the number of rides she goes on.

Number of Rides Marin Has Gone On	Number of Tickets Remaining Expression 1	Number of Tickets Remaining Expression 2	Number of Tickets Remaining Expression 3
2			
3			
r			

d. Tamara earns money babysitting and doing chores. She saves 25% of what she earns. Write different expressions to represent the amount Tamara saves based on the amount she makes babysitting and doing chores.

Tamara's Earnings (\$)	Tamara's Savings (\$) Expression 1	Tamara's Savings (\$) Expression 2	Tamara's Savings Expression 3
Babysitting: $\$ 40$ Chores: $\$ 20$			
Babysitting: $\$ 100$ Chores: $\$ 80$			
Babysitting: b Chores: c			

e. Sam currently has $\$ 120$ in his savings account. He has a summer job and has decided to save a certain amount of money each week for 6 weeks. Write different expressions to represent the total amount of money he will have in his account based on the amount he saves each week.

Amount Saved Each Week (in dollars)	Savings (\$) Expression 1	Savings (\$) Expression 2	Savings (\$) Expression 3
$\$ 8$			
$\$ 15$			
s			

f. Mr. Johnson's class is helping clean up the garden at school. There are 52 students in his class. Four of the students will oversee putting weeds into garbage cans. The remaining students will be divided into groups to weed different areas of the garden. Write different expressions to represent the number of groups that can be made based on the number of students in each group.

Students in a Group	Number of Groups Expression 1	Number of Groups Expression 2	Number of Groups Expression 3
6			
8			
n			

g. On Monday night, Aidan got 6 hours of sleep. On Tuesday night, he got 8 hours of sleep. On Wednesday night, he got 8 hours of sleep and on Thursday night he got 7 hours of sleep. Write different expressions to represent the average number of hours of sleep Aidan got Monday - Friday based on the number of hours of sleep he got on Friday night.

Hours of Sleep on Friday Night	Average Hours of Sleep from Monday - Friday Expression 1	Average Hours of Sleep from Monday - Friday Expression 2	Average Hours of Sleep from Monday - Friday Expression 3
5			
10			
h			

h. Approximately 32\% of households own a cat. Write different expressions to represent the number of households with cats based on the number of households considered.

Number of Households Considered	Number of Households that Own a Cat Expression 1	Number of Households that Own a Cat Expression 2	Number of Households that Own a Cat Expression 3
90			
120			
n			

i. A snack shack at a baseball stadium is buying cartons of hotdogs for the baseball season. Each carton of hotdogs contains 8 packages of hotdogs and each package of hotdogs contains 20 hotdogs. Write different expressions to represent the number of hotdogs based on the number of cartons purchased.

Cartons of Hotdogs Purchased	Total Number of Hotdogs Expression 1	Total Number of Hotdogs Expression 2	Total Number of Hotdogs Expression 3
3			
5			
c			

j. Chantelle is building a dog run for her dog, Otis. The length of the run will be three times longer than the width of the run. Write different expressions to represent the length of the run based on the width of the run.

Width of Dog Run (ft.)	Length of Dog Run (ft.) Expression 1	Length of Dog Run (ft.) Expression 2	Length of Dog Run (ft.) Expression 3
4			
6			
w			

k. Use the information from the previous problem to write different expressions to represent the perimeter of the dog run Chantelle is building.

Width of Dog Run (ft.)	Perimeter of Dog Run (ft.) Expression 1	Perimeter of Dog Run (ft.) Expression 2	Perimeter of Dog Run (ft.) Expression 3
4			
6			
w			

1. Chantelle is planning to put a fence around her dog run. The fencing she is purchasing costs $\$ 10$ a linear foot. Use the information from the previous problems to determine the cost of the fence.

Width of Dog Run (ft.)	Cost of Fence (\$) Expression 1	Cost of Fence (\$) Expression 2	Cost of Fence (\$) Expression 3
4			
6			
w			

Spiral Review

1. Draw a number line model and an area model to represent $2 \cdot 5$.

Number Line Model	Area Model

2. Find the perimeter of the shape.

3. Simplify $2 \cdot 2 \cdot 2 \cdot 2$.
4. What are the common factors of 18 and 24 . What is the greatest common factor of 18 and 24 ?

6.1d Homework: Transitioning from Numeric Expressions to Algebraic Expressions

1. Ali bikes 12 miles per hour. Write different expressions to represent the distance Ali bikes based on the number of hours she bikes for.

Number of Hours Ali Bikes	Distance Ali Bikes (in miles) Expression 1	Distance Ali Bikes (in miles) Expression 2	Distance Ali Bikes (in miles) Expression 3
2			
5			
h			

2. Jason has $\$ 50$ in his lunch account. Each lunch costs $\$ 2.25$. Write different expressions for the remaining balance in Jason's account based on the number of lunches he buys.

Number of Lunches Jason Purchases	Remaining Balance (\$) Expression 1	Remaining Balance (\$) Expression 2	Remaining Balance (\$) Expression 3
2			
4			
n			

3. Ellen is buying packs of streamers and balloons for party decorations. Each pack of streamers costs $\$ 4.50$ and each pack of balloons costs $\$ 5.25$. Write different expressions for the amount Ellen spends on decorations depending on the number of packs of balloons and streamers she buys.

Packs of Decorations	Amount Ellen Spends (\$) Expression 1	Amount Ellen Spends (\$) Expression 2	Amount Ellen Spends (\$) Expression 3
Streamers: 1 pack Balloons: 3 packs			
Streamers: 2 packs Balloons: 3 packs			
Streamers: x packs Balloons: y packs			

4. How would each of your expressions change above if Ellen gets a $\$ 5$ discount on the items she purchases?

Packs of Decorations	Amount Ellen Spends (\$) Expression 1	Amount Ellen Spends (\$) Expression 2	Amount Ellen Spends (\$) Expression 3
Streamers: 1 pack Balloons: 3 packs			
Streamers: 2 packs Balloons: 3 packs			
Streamers: x packs Balloons: y packs			

5. Write different expressions to represent the area of a triangle based on the lengths of the base and height of the triangle.

Base and Height (units)	Area of Triangle Expression 1	Area of Triangle Expression 2	Area of Triangle Expression 3
Base: 5			
Height: 4			
Base: 5			
Height: 8			
Base: b Height: h			

6. A study shows that 79% of teenagers enjoy cooking. Write different expressions to represent the number of teenagers you would expect to enjoy cooking based on the number of teenagers considered.

Number of Teenagers	Number of Teenagers Who Enjoy Cooking Expression 1	Number of Teenagers Who Enjoy Cooking Expression 2	Number of Teenagers Who Enjoy Cooking Expression 3
250			
500			
t			

7. Isaac and Tatum are training for a marathon. On Monday, Tatum runs three times farther than Isaac. Write different expressions to represent the distance Tatum runs on Monday based on the distance Isaac runs.

Distance Isaac Runs (in miles)	Distance Tatum Runs (in miles) Expression 1	Distance Tatum Runs (in miles) Expression 2	Distance Tatum Runs (in miles) Expression 3
2			
4			
m			

8. Use the information from the previous problem to write different expressions to represent the total number of miles run by Isaac and Tatum based on the number of miles Isaac runs.

Distance Isaac Runs (in miles)	Total Distance Run by Isaac and Tatum (in miles) Expression 1	Total Distance Run by Isaac and Tatum (in miles) Expression 2	Total Distance Run by Isaac and Tatum (in miles) Expression 3
2			
4			
m			

9. Owen gave 7 dimes, 3 nickels, and 2 pennies to each of his cousins. Write different expressions to represent the total amount of money Owen gave away based on the number of cousins he has.

Number of Cousins Owen Has	Total Amount Given Away by Owen (\$) Expression 1	Total Amount Given Away by Owen (\$) Expression 2	Total Amount Given Away by Owen (\$) Expression 3
4			
7			
c			

6.1e Self-Assessment: Section 6.1

Consider the following skills/concepts. Rate your comfort level with each skill/concept by checking the box that best describes your progress in mastering each skill/concept. Corresponding sample problems, referenced in brackets, can be found on the following page.

Skill/Concept	Minimal Understanding $\mathbf{1}$	Partial Understanding $\mathbf{2}$	Sufficient Mastery $\mathbf{3}$	Substantial Mastery $\mathbf{4}$
1. Write different but equivalent numeric expressions to represent a real- world problem using grouping and operator symbols correctly (parentheses,				
fraction bars, middle				
dot, etc.).				

vice versa. Use and understand academic vocabulary.				
5. Recognizand				
interpret patterns				
and structure in				
numeric expressions				
and use this				
understanding to				
write algebraic				
expressions.				

Sample Problems for Section 6.1

Square brackets indicate which skill/concept the problem (or parts of the problem) align to.

1. I had \$5. Then I spent $\$ 1$ a day for 2 days in a row. How much money do I have now? [1] [2\}

	Expression	Simplified Form	Does it work?	Ideas
a.	$5-1+1$			
b.	5-1-1			
c.	$5-(1-1)$			
d.	$5-(1+1)$			

2. Inez bought two pencils for $\$ 0.30$ each and two notebooks for $\$ 1.20$ each. How much money did Inez spend? [1] [2]
a.

Expression	Simplified Form	Does it work?	Ideas
$(2+2)(0.30+1.20)$			
$2(0.30+1.20)$			
$(2)(0.30)+2(1.20)$			
$0.60+2.40$			

6. Equivalent or Not?

	$2 x$	$x+x$
Let $\boldsymbol{x}=\mathbf{0}$		
Let $\boldsymbol{x}=\mathbf{5}$		

7. Equivalent or Not? [3]

	$5 y+2 y+4$	$11 y$
Let $\boldsymbol{y}=\mathbf{2}$		
Let $\boldsymbol{y}=\mathbf{3}$		

8. Equivalent or Not?
[3]

	$\frac{1}{2}(x+16)$	$x+8$
Let $\boldsymbol{x}=\mathbf{4}$		
Let $\boldsymbol{x}=\mathbf{1 0}$		

9. Write an algebraic expression to represent the phrase "The quotient of a number and three increased by 7." [4]
10. Write an algebraic expression to represent the phrase "One-third of the sum of a number and twentyone." [4]
11. Are the expressions in \#9 and \#10 equivalent? Justify your answer. [3] [4]
12. Write the word form of the expression $5 n+4$. [4]
13. Write the word form of the expression $10-3 x$. [4]
14. At Pizza King, a pizza costs $\$ 9.00$ plus $\$ 1.25$ for each additional topping. Write different expressions that represent the cost of a pizza based on the number of toppings on the pizza. [5]

Number of Toppings	Cost of Pizza (\$) Expression 1	Cost of Pizza (\$) Expression 2
1		
3		
5		
t		

15. Write different expressions to represent the perimeter of an equilateral triangle based on the side length of the triangle. [5]

Side Length (units)	Perimeter of Triangle Expression 1	Perimeter of Triangle Expression 2	Perimeter of Triangle Expression 3
4			
9			
y			

16. Antony and his family are driving 60 miles per hour on the interstate. [5]
a. Complete the table below to show the distance Antony's family travels based on the number of hours they travel at a speed of 60 miles per hour.

Time (hours)	Distance (miles)
0	
1	
2	
3	
4	
5	
6	
t	

17. Chad owes his mom $\$ 150$. He plans to pay back $\$ 15$ each week. [5]
a. Complete the table below to show the amount of money Chad still owes his mom based on the number of weeks that have passed.

Time (weeks)	Amount Chad Owes (\$)
0	
1	
2	
3	
4	
5	
6	
t	

18. Augusto is saving money. He currently has $\$ 400$ in his account and plans to save $\$ 25$ each month for the next several months. [5]
a. Complete the table below to show the amount of money Augusto will have in his account over time.

Time (months)	Savings (dollars)
0	
1	
2	
3	
4	
5	
6	
m	

19. Sachin has scored a $94 \%, 88 \%$, and 85% on his first three math tests of the semester. [5]
a. Complete the table below to show the average of Sachin's math test scores based on his score on the fourth math test.

Score on Fourth Math Test (percent)	Average on Four Math Tests (percent)
100	
95	
88	
85	
80	
s	

20. A store is offering a 25% discount on everything in the store. [5]
a. Complete the table below to show the amount of the discount based on the original price of the item. Then, determine the cost of the item after the discount.

Original Cost (dollars)	Amount of Discount (dollars)	Cost of Item After Discount (dollars)
$\$ 20.00$		
$\$ 30.00$		
$\$ 40.00$		
$\$ 50.00$		
$\$ 60.00$		
$\$ 100.00$		
c		

21. Christina tips 20% when she goes out to eat. [5]
a. Complete the table below to show the amount of money Christina leaves for tip and the total cost of the meal including tip depending on the cost of the meal before tip.

Cost of Meal Before Tip (dollars)	Amount of Tip (dollars)	Total Cost of Meal Including Tip (dollars)
$\$ 15.00$		
$\$ 20.00$		
$\$ 55.00$		
$\$ 60.00$		
$\$ 74.00$		
$\$ 100.00$		
c		

Section 6.2: Writing, Simplifying, and Evaluating Algebraic Expressions

Section Overview:

This section begins with students re-visiting problems from Section 1 of this chapter. Students examine different but equivalent expressions used to represent real world problems. Through a teacher-led discussion, students explain why the expressions are equivalent and what properties are being used to transform the expressions. Students learn and use academic vocabulary (terms, like terms, constants, coefficients) as they manipulate the expressions. Next students use models (number lines and tiles) to represent and transform algebraic expressions. During this process of writing equivalent expressions, students learn about a special form that an expression can take which is the expression's simplified form. The simplified form of a linear expression takes the form $A x+C$ where A and C are numbers. The section then moves to exponents. In earlier grades, students learned that exponents can be used to represent powers of ten. This section extends this understanding to include bases other than ten. Students learn to move fluently between the expanded form, exponential form, and simplified form of an expression containing repeated multiplication. These concepts are explored both numerically and geometrically with connections to area and volume. From here, students learn to simplify expressions containing whole number exponents by following the Order of Operations. Then, they evaluate algebraic expressions and formulas containing exponents. In the last lesson of this section, students synthesize the ideas of the section by writing, simplifying, and evaluating expressions to represent real world problems.

Concepts and Skills to Master:

By the end of this section, students should be able to:

1. Identify parts of an algebraic expression using mathematical language.
2. Apply the properties of operations to generate equivalent expressions, including the simplified form of an algebraic expression.
3. Simplify numeric expressions containing exponents using the Order of Operations.
4. Evaluate algebraic expressions for specific values of the variable, including expressions with exponents and expressions that arise from formulas.
5. Write algebraic expressions to represent real world problems.

6.2a Class Activity: Simplifying Algebraic Expressions Part I

Activity 1: Complete the statements below.
n\#

1. 5 apples +2 apples $=$ \qquad apples
2. 5 ones +2 ones $=$ \qquad ones
3. 5 tens +2 tens $=$ \qquad tens
4. $\frac{5}{8}+\frac{2}{8}=$ \qquad eighths
5. $0.5+0.2=$ \qquad tenths
6. 5 feet +2 feet $=$ \qquad feet
7. 5 miles +2 miles $=$ \qquad miles

Try these...
$5 x+2 x$
$6 a+2 a$
$2 b+3 b$
$8 y-3 y$
$5 f-4 f$

Activity 2: In this activity, you will re-visit some of the problems from 6.1d and examine the different algebraic expressions that were written to represent the problems. While doing this, think about the following questions: 1) What does it mean to say that two algebraic expressions are equivalent? How can you show two algebraic expressions are equivalent? 2) What does it mean to simplify an algebraic expression? \#

Problem:		

\square

Problem:		

Problem:		

Activity 3: Draw a model to represent each expression.
Then simplify the expression. If the expression is already simplified, write "already simplified".

Tile	Dimensions of Tile	Area of Tile

$3(2 x)$	
$2 y+y$	
$2(2 y)+y$	
$\frac{1}{2} x+\frac{1}{4} x$	
$x+y$	

Activity 4: Simplify the expression. If the expression is already simplified, write "already simplified".

Activity 5: Write several expressions to represent the perimeter of each object. Simplify each expression to show they are equivalent.

Activity 6:

a. Write three different expressions that are equivalent to $6 s$.
b. Write three different expressions that are equivalent to $3.6 y$.
c. Write three different expressions that are equivalent to x.
d. Write three different expressions that are equivalent to $5 x+12 y$.
e. Write three different expressions that are equivalent to $6 a+18$.

Activity 7:

a. Explain what each word means. Use examples and non-examples to support your ideas.

Term:

Constant:

Coefficient:

Like Terms:

b. Write an expression with 3 terms. Make one of the terms a constant.
c. Write an expression with like terms. Then, simplify the expression.
d. Write an expression with one term that has a coefficient of 2 and another term with a coefficient of 1.
e. Write an expression that is not in simplified form. Then, simplify the expression.

Spiral Review

1. Simplify.
a. 5×6
b. 5×60
c. 5×600
2. Write the prime factorization of 80 .
3. Find the volume of a rectangular prism with a length of 5 inches, a width of 7 inches, and a height of 4 inches.
4. Are the expressions $3 x+15$ and $3(x+5)$ equivalent? Justify your answer.

6.2a Homework: Simplifying Algebraic Expressions Part I

1. Identify the terms, constants, coefficients, and like terms in each algebraic expression. The first one has been done for you.

Expression	Terms	Constants	Coefficients	Like Terms
a. $3 x+x+13+5$	$3 x, x, 13,5$	13,5	3,1	$3 x$ and x 13 and 5
b. $2 y+10+3 y+4$				
c. $11+0.04 c+c$				
d. $3 x+2 y+5 x+7 y$				
e. $2(3 x)+7 x+13$				

2. Simplify the expressions from above.
a. \qquad
b. \qquad
c. \qquad
d. \qquad
e. \qquad

Directions: Simplify each expression. If the expression is already simplified, write "already simplified".

3. $y+y+y$	4. $15+s+s+s+s$	5. $3 a+8+8 a+6$
6. $15 x-5$	7. $3 x+8+4 x-3$	8. $x+3+3 x+3 y$
9. $15+6 b-7$	10. $r+2 r+3 r$	11. $2 x+1$
12. $x+y+z$	13. $4 t+10+9 t-1$	14. $9 x-4 x+2 x$
15. $9 x-(4 x+2 x)$	16. $2(5 x)+3(4 x)$	17. $5(3 x)+5(9)$
18. $3(6 x)-2$	19. $7(2 x+x+x+x)$	20. $4 r+2(7 r)$
21. $3+15 b-8 b$	$\text { 22. } \frac{1}{6} y+\frac{2}{3} y$	23. $1 \frac{1}{5} a+\frac{3}{10} a+2 \frac{1}{4}$
24. $0.25 x+\frac{3}{4} x$	25. $y-0.1 y$	26. $0.45 g+g$
27. $c-c$	$28 . \frac{3}{5} d+\frac{7}{10}+0.1 d+\frac{1}{20}$	29. $6 \frac{2}{5} q-q$
30. $4(5 x)-20$	31. $(x+1)+(x+1)$	32. $(4 x+1)+(4 x+1)$

33. $y+0.1 y+0.01 y+0.001 y+0.0001 y$
34. $5(d)+4(0.1 d)+3(0.01 d)+2(0.001 d)+0.0001 d$
35. Write three expressions equivalent to the expression $4 c$.
36. Write three expressions equivalent to the expression $6 b+5$.
37. Write three expressions equivalent to the expression $\frac{5}{8} k$.

Directions: Write several expressions to represent the perimeter of each object. Simplify each expression to show they are equivalent.

42. Write your own algebraic expression with four terms that is not simplified. Then, simply the expression.

6.2b Class Activity: Numeric Expressions and the Distributive Property

Activity 1:

a. Luca is buying practice uniforms for soccer. Each jersey costs $\$ 20$ and each pair of shorts costs $\$ 30$. He purchases two practice jerseys and two pairs of practice shorts. Write an expression that can be used to represent the total amount Luca spends on practice uniforms. Then, simplify the expression to show the total amount Luca spends on practice uniforms.
b. Hannah is purchasing CDs at a local music store. The CDs normally cost $\$ 12$ each. The store is offering a discount of $\$ 2$ off each CD if you buy 4 or more. Hannah is planning to buy 5 CDs. Write an expression to represent the cost before tax of Hannah's purchase.

Activity 2:

a. Xavier and Penelope were asked to find the area of the rectangle shown below.

Xavier found the height of the rectangle (3) and multiplied it by the base of the rectangle (14) and multiplied the two numbers together and found the answer to be 42 square units:
$3(14)=42$
Penelope started by cutting the rectangle into two smaller rectangles:

Then, she found the area of each of the smaller rectangles:
$3(10+4)$
$3(10)+3(4)$
$30+12$
42
b. The following are area models that can be used to represent the number 50. Under each area model, fill in the blanks to write an expression for the area model shown.

5	10 50 $5(\ldots \ldots)=50$	3 7 5 15 35$\begin{gathered} 5\left(__{2}+\ldots\right)=50 \\ 5(\ldots \quad)+5(\ldots \quad)=50 \\ 15+35=50 \end{gathered}$
5	5 5 25 25$\begin{gathered} 5(\ldots \ldots+\ldots)=50 \\ 5(\ldots)+5(\ldots \ldots)=50 \\ 25+25=50 \end{gathered}$	Create your own area model to represent the number 50. Then, write the expressions for the area model you created.

c. Angela was asked to find the product of 6 and 28. Using the templates below, draw area models to show some of the different ways Angela can find the product of 6 and 28 . Write the expressions that correspond to each area model.

Distributive Property
$a(b+c)=a b+a c$
$a(b-c)=a b-a c$

Activity 3: Simplify the following expressions using two different methods. The first one has been done for you. \square

a. $3(20+1)$ Method 1: $\begin{aligned} & 3(20)+3(1) \\ & 60+3 \\ & 63 \end{aligned}$	Method 2: 3(21) 63	b. $9(50+7)$ Method 1:	
c. $7(30-1)$ Method 1:	Method 2:	d. $4(100-3)$ Method 1:	Method 2:
e. $\frac{1}{5}(100+60)$ Method 1:	Method 2:	f. Eight multiplied by the sum of thirty and six Method 1:	Method 2:

Activity 4: Use the Distributive Property to find the product using mental math strategies. The first one has been done for you.

a. 6(53)	b. 8(104)	
$6(50+3)$ $6(50)+6(3)$ $300+18$ 318		
c. $5(99)$	d. $12(53)$	
e. $5(666)$	f. $20\left(6 \frac{1}{2}\right)$	

g. $\frac{1}{4}(104)$
h. $\frac{1}{5}(29)$

Spiral Review

1. Write an algebraic expression for each phrase.
a. Twice the sum of a number n and five.
b. The sum of twice a number n and five.
c. The sum of twice a number n and ten.
2. Which of the expressions in \#1 are equivalent? Justify your answer.
3. Simplify the following expressions. If the expression is already simplified, write "already simplified".
a. $2 x+x+5$.
b. $4 y+6+3 y-4$.
c. $6 c-c+c$
d. $3(5 b)$
e. $3+5 b$
4. Justine sent 2,500 texts last month. Her brother sent half as many texts. How many texts did Justine and her brother send altogether?

6.2b Homework: Numeric Expressions and the Distributive Property

Directions: Write two different expressions to solve each word problem. Then, simplify each expression to answer the question.

1. Mr. Green is purchasing four new computers for the computer lab. Each computer costs $\$ 350$. In addition, Mr. Green is purchasing a protection plan for each computer. The cost of the protection plan is $\$ 25$ per computer. Use the distributive property to write two different expressions that can be used to represent the cost of the computers with the protection plans. Then, simplify both expressions.
2. Ed burns 500 calories an hour running. He burns 650 calories an hour biking. Use the distributive property to write two different expressions that can be used to represent the difference between the number of calories Ed burns running for 2 hours vs. biking for 2 hours. Then, simplify both expressions.
3. There are several methods shown to find the product of 6 and 14 using area models. Show the area of each rectangle on the picture. Complete the expressions below each picture so that they correspond to the picture. The first one has been done for you.

4. Using the templates below, draw area models to show different ways to represent the product of 5 and 68. Write the expressions that correspond to each area model.

Directions: Simplify the following expressions using two different methods.

| 5. $7(10+3)$ | Method 2: $8(30-1)$ | |
| :---: | :--- | :--- | :--- |
| Method 1: | Method 1: | Method 2: |
| | | |

Directions: Use The Distributive Property to find the product.

$11.7(12)$	$12.4(105)$
$13.3(24)$	$14.6(47)$
$15.7(19)$	$16.5(222)$
$17.4\left(8 \frac{3}{4}\right)$	

6.2c Class Activity: Simplifying Algebraic Expressions Part II

Activity 1:

a. Let's revisit part k . from the 6.1d Class Activity. It is about Chantelle and the dog run she is building. If you recall, Chantelle wants the length of her dog run to be three times longer than the width. Here are some pictures of possible dog runs Chantelle can build:

Complete the chart to show three different expressions to represent the perimeter of the rectangle based on the width of the dog run.

Width of Dog Run (ft.)	Perimeter of Dog Run (ft.) Expression 1	Perimeter of Dog Run (ft.) Expression 2	Perimeter of Dog Run (ft.) Expression 3
4			
6			
w			

Activity 2:

a. Complete the table below. The first one has been done for you.

Multiplication Sentence	Describe Using Words	Related Addition Sentence	Simplified Form of Expression
$3(2)$	3 copies of two	$2+2+2$	6
$3 x$			
$3(2 x)$			
$3(x+2)$			

b. Four area models are shown below. Write the expression from part a. that corresponds to each area model.

c. Complete the chart below.

Multiplication Sentence	Describe Using Words	Related Addition Sentence	Simplified Form of Expression	
	four copies of six			
		$x+x+x+x+x$		
		$(x+1)+(x+1)+(x+1)+(x+1)$		
	Three copies of the sum of twice a number and seven	$(4 x+8)+(4 x+8)$		

Activity 3: Write an equivalent expression without parentheses.

a. $4(x+7)$	b. $9(x+2)$
c. $6(x+4)$	d. $5(10+x)$
e. $8(x-7)$	f. $12(x-5)$
g. $\frac{1}{3}(x-9)$	h. $\frac{3}{4}(x+12)$
i. $0.6(x-4)$	j. $0.5(7-x)$

k. $8(7 x+1)$	l. $\frac{1}{5}(25 x+45)$
m. $2(x+3)+7 x$	n. $9(3 x-4)-x$
o. $10+3(x+6)$	p. $6(x+3)-10$
q. $4(2 x+9)+7(x-3)$	r. $5(a+b)+6 a$
y. $0.04(0.2 x-800)+\frac{3}{10} x$	z. $\frac{9}{10}\left(\frac{3}{2} x-80\right)+\frac{4}{5} x$
s. $3(2 x+4)+3(2 x \cdot 4)$	t. $2(2 x)+2(2+x)$
w. $\quad 0.25(16 x+4)-0.6 x$	

a. Write expressions in simplified form to represent the area and perimeter of the rectangle.

Perimeter:

Area:

b. If the length and width of the rectangle in part a. are tripled, write expressions in simplified form to represent the area and perimeter of the new rectangle.

Perimeter:

Area:

c. Write expressions in simplified form to represent the perimeter and area of the rectangle.

Perimeter:

Area:
d. If the length and width of the rectangle in part c . are doubled to create a new rectangle, write expressions for the perimeter and area of the new rectangle.

Perimeter:

Area:

e. Write an expression in simplified form to represent the area of the triangle.

Area:

f. If the base and height of the triangle in part e. are halved, write an expression in simplified form to represent the area of the new triangle.

Area:

g. Write an expression in simplified form to represent the area of the trapezoid.

Area:

Spiral Review

1. Find 81% of 90 .
2. Find the mean absolute deviation of the data set: $\{10,12,8,12,8\}$
3. Put the following numbers in order from least to greatest.
a. $-2,-4,-10,0$
b. $-2.1,-2,-2.01,-2.11$
4. Complete the table below to show the relationship between meters and centimeters.

Meters	Centimeters
1	
2	
3	
10	
m	

Write an equation to represent the number of centimeters c based on the number of meters m.

6.2c Homework: Simplifying Algebraic Expressions Part II

Directions: In each of the following problems, an expression is given. Circle the expressions that are equivalent to the given expression. Justify your answer.

1. Select all the expressions that are equivalent to $2(x+5)$. Justify your answer.

$$
\begin{aligned}
& 2(x)+2(5) \\
& 2 x+5 \\
& 2 x+10 \\
& 12 x
\end{aligned}
$$

2. Select all the expressions that are equivalent to $3(y-1)+2 y$. Justify your answer.

$$
\begin{aligned}
& 3(y)-3(1)+3(2 y) \\
& 3 y-3+2 y \\
& 5 y-3 \\
& 2 y
\end{aligned}
$$

3. Select all the expressions that are equivalent to $\frac{1}{4}(x+12)$. Justify your answer.

$$
\begin{aligned}
& x+3 \\
& \frac{1}{4} x+\left(\frac{1}{4}\right) 12 \\
& \frac{1}{4} x+3 \\
& \frac{x}{4}+\frac{12}{4}
\end{aligned}
$$

4. Select all the expressions that are equivalent to $4(2 x+7)$. Justify your answer.

$$
4(2 x)+4(7)
$$

$6 x+28$
$8 x+28$
$36 x$

Directions: Match each expression on the left to its model on the right by writing the letter for the corresponding model under the expression. Then, simplify each expression.

Expression

5. $2(2 x+2)$

Matches to Model: \qquad
Simplified Expression:
6. $2(2 x)+2$

Matches to Model: \qquad

Simplified Expression:
B

7. $2 x+2$

Matches to Model: \qquad
Simplified Expression:
C

x	x
x	x

D

x	x	1	1
x	x	1	1

9. Complete the chart below.

Multiplication Sentence	Describe Using Words	Related Addition Sentence	Simplified Form of Expression
$2(8)$			
	Four copies of the product of seven and a number x		
$3(2 x+5)$		$(x+6)+(x+6)+(x+6)+(x+6)$	
	Two copies of the sum of three times a number n and twenty		

10. Simplify each of the following expressions.

a. $2(x+9)$	b. $12(x-3)$
c. $7(3 x+8)$	d. $11(5+x)$
e. $4(2 x+8)$	f. $9(x-6)-3 x$
g. $2 x+8(3+x)$	h. $15+2(3 x-4)$
i. $5(b+3)+6 b$	j. $2(4 y+3)+5(y+1)+y$
k. $\frac{1}{8}(64 x-8)$	$1 . \quad \frac{1}{2}(x+24)+3 x+8$
m. $0.1(100+10 x)+0.2(100+10 x)$	n. $\frac{1}{6}(2 x+42)+\frac{1}{4} x-2$

11. Write expressions in simplified form to represent the perimeter and area of the rectangle.

12. Write expressions in simplified form to represent the perimeter and area of the rectangle.

Perimeter:

Area:

13. Write an expression in simplified form to represent the area of the triangle.

Area:

14. Write an expression in simplified form to represent the area of the trapezoid.

Area:

6.2d Class Activity: Modeling Backwards Distribution (Factoring)

Activity 1:

a. The base of a rectangle measures 5 units. The height of the rectangle can be represented by the expression $(x+3)$. Write an expression to represent the area of the rectangle.

b. The height of a rectangle measures 4 units. The area of the rectangle can be represented by the expression $24 x+40$ square units. Write an expression to represent the length of the rectangle.

4

$$
A=24 x+40
$$

c. A rectangle has an area of $8 x+32$ square units. Complete the following table to show what the height of the rectangle is based on the base of the rectangle.

Base of Rectangle (units)	Height of Rectangle (units)	Area of Rectangle (square units)
2 units		$8 x+32$
4 units		$8 x+32$
8 units		$8 x+32$

d. A rectangle has an area of $32 x+24$ square units. Complete the table to show the possible dimensions of the rectangle.

Base of Rectangle (units)	Height of Rectangle (units)	Area of Rectangle (square units)
		$32 x+24$

Activity 2: Write each expression as the product of two factors.

a. $5 x+20$	b. $4 x-18$
c. $12 x+2$	d. $20 x+30$
e. $12 x+6$	f. $12-2 x$
g. $8+4 x$	h. $11 x+44$
i. $10 x+12$	j. $20 x+12$

Spiral Review

1. Jeremy can swim 3 laps in 5 minutes. How many laps does Jeremy swim in 1 minute?
2. Using the information from the previous problem, determine the number of laps Jeremy can swim in 8 minutes.
3. Write 10^{2} in standard form.
4. Write $\left(5 \times 10^{2}\right)$ in standard form.

6.2d Homework: Modeling Backwards Distribution (Factoring)

1. Which of the following expressions are equivalent to $12 x+18$?

$$
\begin{aligned}
& 2(6 x+9) \\
& 3(4 x+6) \\
& 6(2 x+3) \\
& 12(x+18)
\end{aligned}
$$

2. A parallelogram has an area of $36 x+30$ square units. Complete the following table to show what the height of the parallelogram is based on the base of the parallelogram.

Base of Parallelogram (units)	Height of Parallelogram (units)	Area of Parallelogram (square units)
2 units		$36 x+30$
3 units		$36 x+30$
6 units		$36 x+30$

3. A rectangle has an area of $80 x+100$ square units. Complete the table to show the possible dimensions of the rectangle.

Base of Rectangle (units)	Height of Rectangle (units)	Area of Rectangle (square units)
		$80 x+100$

4. Show some different ways the expression $6 x+42$ can be written as the product of two factors.
5. Show some different ways the expression $12 x+18$ can be written as the product of two factors.

Directions: Write each expression as the product of two factors.

6. $18 r+24$	$7.9 r+12$
$8.30 m-6$	$9.8 n+32$
$10.42 m+66$	$11.6+66 x$
$12.12 x+8$	$13.32 x+8$
$14.35 x+63$	$15.18 x-30$

6.2e Class Activity: Repeated Multiplication and Exponents

Activity 1: We know we can express repeated addition using multiplication. The table below shows the relationship between addition and multiplication:

Addition Sentence	Describe Using Words	Related Multiplication Sentence
$5+5+5$	3 copies of 5	$3(5)$
$6+6+6+6$	4 copies of 6	$4(6)$
$10+10+10+10+10+10$	6 copies of 10	$6(10)$

What if we want to express repeated multiplication using shorthand notation. For example, if you are multiplying the number four by itself nine times, it would be time-consuming to write:
$4 \cdot 4 \cdot 4$

We can use exponents to represent repeated multiplication in shorthand notation.
In earlier grades, you learned that numbers such as ten, one hundred, one thousand, ten thousand, etc. can be written using powers of ten. Study the chart below to review:

Number in Standard Form	Number in Expanded Form	Number Written as a Power of Ten
10	10	10^{1}
100	$10 \cdot 10$	10^{2}
1,000	$10 \cdot 10 \cdot 10$	10^{3}
10,000	$10 \cdot 10 \cdot 10 \cdot 10$	10^{4}
100,000	$10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$	10^{5}

The third column shows repeated multiplication being written using exponents. These numbers are all written using exponential notation or in exponential form.
a. Apply what you learned about powers of ten to re-write $4 \cdot 4 \cdot 4$ using exponents.

Definition of an Exponent

$$
a^{n}=\underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}_{n \text { times }}
$$

a is called the base and n is called the exponent or power.
The exponent tells you how many times to multiply the base by itself. We read the expression as, " a to the power of n " or " a raised to the nth power".

Activity 2: Complete the chart below.

Expanded Form	Exponential Form	Simplified Form
a. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$		
b. $11 \cdot 11$		
c. $10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$		
d. $5 \cdot 8 \cdot 8 \cdot 8 \cdot 8$		
e. $\frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5} \cdot \frac{2}{5}$		
f.	2^{3}	
g.	3^{2}	
h.	$3 \cdot 5^{2}$	
i.		

j.	$(0.1)^{3}$	
k. $r \cdot r \cdot r \cdot r$		
l. $5 \cdot g \cdot g \cdot g \cdot g \cdot g \cdot g=$		
m. $(2 x)(2 x)(2 x)$	d^{7}	
n. $a \cdot b \cdot b \cdot b \cdot b \cdot b$	p^{5}	
o.		
p.	$(4 r)^{3}$	
q.	$4 r^{3}$	
r.	$a^{3} b^{4}$	
s.	$m n^{2}$	
t.		$(m n)^{2}$
u.		

Activity 3: A square is shown below.

a. Write an expression in expanded form that can be used to find the area of the square.
b. Write an expression in exponential form that can be used to find the area of the square.
c. Write the simplified form for the area of the square.
d. The expression 3^{2} is read " 3 to the power of 2 " or " 3 squared". Why do you think the power of two is also referred to as "squared"?
e. Draw a picture to represent 5^{2}.
f. Draw a picture to represent $x \cdot x$ or x^{2}.

g. Draw a picture to represent $3 x^{2}$.
h. Draw a picture to represent $(3 x)^{2}$.

i. Draw a picture to represent y^{2}.

Activity 4: A cube is shown below.

a. Write an expression in expanded form that can be used to find the volume of the cube.
b. Write an expression in exponential form that can be used to find the volume of the cube.
c. Write the simplified form for the volume of the cube.
d. The expression 4^{3} is read " 4 to the power of 3 " or " 4 cubed". Why do you think the power of three is also referred to as cubed?
e. Draw a picture to represent 5^{3}.
f. Draw a picture to represent x^{3}.
g. Draw a picture to represent $5 x^{3}$.
h. Draw a picture to represent $(5 x)^{3}$.

Activity 5: Reasoning

a. Is $2^{3}=3^{2}$? Justify your answer.
b. Predict which is greater. $10 \cdot 2$ or 2^{10}. Then, test your prediction.
c. Predict which is greater. 10^{2} or 2^{10} Then, test your prediction.
d. Compare 1^{49} and 1^{50}.
e. Tony thinks that $4 x^{3}$ is the same as $(4 x)^{3}$. Explain to Tony why his thinking is incorrect.
f. Write as many expressions as you can that use exponents and simplify to the number 8 .
g. Write as many expressions as you can that use exponents and simplify to the number 16 .
h. Write as many expressions as you can that use exponents and simplify to the number 64.
i. Simplify $x^{3}+x^{3}+x^{3}$

Spiral Review

Directions: Simplify the following expressions.

1. $b+b+b$	2. $5+x+x+x+x$
3. $4 x+3 y+x+8 y$	$4.4 x+4 x+4 x$

6.2e Homework: Repeated Multiplication and Exponents

1. Represent the expression $9+9+9+9+9+9$ in shorthand notation.
2. Represent the expression $9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9$ in shorthand notation.
3. Explain how $4(2)$ is different than 2^{4}.

Directions: Complete the chart below.

Expanded Form	Exponential Form	Simplified Form
4. $5 \cdot 5$		
5. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$		
6. $4 \cdot 4 \cdot 4$		
7. $3 \cdot 3 \cdot 3 \cdot 3$		
8. $10 \cdot 10 \cdot 10$		
9. $\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$		
$10.10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$		
$11 \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10}$		
12.	12^{3}	
13.	8^{2}	
14.	$2^{4} 4^{2}$	
15.	$2^{3} 3^{3}$	
16.	$2 \cdot 6^{3}$	

17.	$\left(\frac{2}{3}\right)^{3}$	
18.	$2 \cdot 3^{2}$	
19.	$3 \cdot 2^{2}$	
20.	$(2.5)^{3}$	
$21 . d \cdot d \cdot d$		
$22 . x \cdot y \cdot y$		
$23.2 \cdot c \cdot c \cdot c \cdot c$		
$24 .(9 a)(9 a)$		
$25.9 \cdot a \cdot a$		
26.		
27.		
$28 .(a b)(a b)(a b)(a b)$		

29. Draw or describe a picture to represent two cubed.
30. Draw or describe a picture to represent ten squared.
31. Draw or describe a picture to represent x^{2}.
32. Draw or describe a picture to represent $4 x^{2}$.
33. Draw or describe a picture to represent $(4 x)^{2}$.
34. Write as many expressions as you can that use exponents and simplify to the number 36.
35. Write as many expressions as you can that use exponents and simplify to the number 100.
36. Give two numbers for a and b where $a^{b} \neq b^{a}$.
37. Give two numbers for a and b where $a^{b}=b^{a}$.
38. Give a number for a so that $a^{50}=a^{100}$.
39. Write $\left(x^{3}\right)\left(x^{3}\right)$ in exponential form.
40. Draw or describe a picture of $3^{2}+5^{2}$.
41. Draw or describe a picture of $(3+5)^{2}$.

6.2f Class Activity: Evaluating Algebraic Expressions

Activity 1: Simplify each expression.

a. $4 \cdot 3^{2}$	b. $(4 \cdot 3)^{2}$
c. $(2+3)^{2}$	d. $(2 \cdot 3)^{2}$
e. $4^{2}+6(8-3)$	f. $2^{3} \div 2+2(9-3)$
g. $2 \cdot 4^{2}-3 \cdot 7$	h. $(4+5)^{2}-11 \div 11$
i. $8-2 \div \frac{1}{4}$	j. $\left(\frac{4}{5}+\frac{3}{10}\right)^{2} \cdot 1 \frac{9}{11}$

Activity 2: Evaluate each expression when $x=3$.

Expression	Value When $\boldsymbol{x}=\mathbf{3}$
a. $4 x$	
b. $3(4 x)$	
c. $4 x^{3}$	
d. $(4 x)^{3}$	
e. $4 x+4 x+4 x$	
f. $64 x^{3}$	

Activity 3: Evaluate the following expressions when $a=2, b=4$, and $c=10$.

a. $a+b$	b. $a b$	c. $\frac{a}{b}$
d. $\frac{b}{a}$	e. $b-a$	f. $3(b+c)$
g. $\frac{a+c}{b}$	h. $\frac{2 b}{c}$	i. $\quad a \div 0.01$
j. $\quad a(b+c)$	k. $4 a-2 a+\frac{c}{b}$	1. $2 c-2 b$
m. $\frac{c}{2}-5$	n. $\frac{c-5}{2}$	o. $5 b^{2}$
p. $(5 b)^{2}$	q. $c^{2} b^{3}$	r. $2 a^{3}+4 a$
s. $2(b-1)^{2}-3$	t. $5 b-2 b$	u. $2 c+4-\left(a^{4}+\frac{c}{a}\right)$
v. $2+b^{2}$	w. $2 b^{2}$	x. $(2+b)^{2}$
y. $\frac{1}{2}(2 c+4)$	z. $0.35 c+0.01 b^{2}$	$\text { aa. } \frac{a^{2}}{c}$
$\text { bb. }\left(\frac{a}{c}\right)^{2}$	cc. $10(a+b)$	dd. $10 a+10 b$

Activity 4: Evaluate the following expressions when $a=\frac{4}{5}, b=5$, and $c=\frac{9}{20}$. $\quad \square$

a. $a+b$	b. $a b$	c. $\frac{a}{b}$
d. $a+c$	e. $a c$	f. $\frac{a}{c}$
g. $b+c$	h. $b c$	i. $\frac{b}{c}$
$\text { j. } \frac{c}{b}$	k. $b-a$	1. $b \div a \cdot c$
m. $b \div(a \cdot c)$	n. $\frac{a+c}{b}$	o. $b(a+c)$
p. $4 a-2 a+b$	q. $2 b-4 c$	r. $100 a^{2}$
s. $(100 a)^{2}$	t. $b-a^{2}$	u. $(b-a)^{2}$
$\text { v. }\left(\frac{c}{a}\right)^{2}$	w. $10(a+b)$	x. $10 a+10 b$

Activity 5: Using Formulas
A marketing company is designing different sized boxes to ship clothes in. Each box will be in the shape of a cube.
a. Using the formula $6 s^{2}$, determine the amount of material needed to make each box depending on the side length of the box.

Side Length of Box (inches)	Surface Area of Box (inches 2)
8	
12	
16	
20	
24	

1. The expression $\frac{9}{5} C+32$ can be used to determine the temperature in degrees Fahrenheit depending on the temperature in degrees Celsius.
b. Use the expression to complete the table below to determine the temperature in degrees Fahrenheit depending on the temperature in degrees Celsius.

Temperature (in degrees Celsius)	Temperature (in degrees Fahrenheit)
0	
15	
25	
40	
60	
100	

2. The expression $\frac{s^{2} h}{3}$ can be used to determine the volume of a square pyramid where s represents the side length of the square base and h represents the height of the pyramid.
a. Use the expression to complete the table to show the volume of a pyramid depending on the area of the base of the pyramid and the height of the pyramid.

Side Length of Base (inches)	Height of Pyramid (inches)	Volume of Pyramid (inches 3)
2	3	
3	6	
4	9	
5	12	
6	15	

Spiral Review

1. Caleb claims that $x^{2}=2 x$ using the following argument:

If $x=2$, then
$2^{2}=2(2)$
$4=4$
Therefore, $x^{2}=2 x$
Give a counterexample to show that Caleb's thinking is incorrect.
2. The side length of a square is 5 meters. Select all expressions that can be used to find the area of the square. Find the area of the square.
a. 2(5)
b. $5+5+5+5$
c. $5 \cdot 5$
d. 5^{2}
3. I earned $\$ 6$. Then I bought 4 candy bars for $\$ 0.50$ each. Select all the expressions that can be used to determine the amount of money I have left. Determine the amount of money I have left.
a. $6-0.50-0.50-0.50-0.50$
b. 6-4(0.50)
c. $6-(0.50-0.50-0.50-0.50)$
d. $6-(0.50+0.50+0.50+0.50)$
4. I am thinking of a number. When I multiply my number by four, I get twenty-four. What number am I thinking of?

6.2f Homework: Evaluating Algebraic Expressions

Directions: Simplify each expression.

1. $(6+8) \div(12-5)$	$2 . \frac{100}{5^{2}}$
3. $\frac{12-4}{5+3}$	$4.5(8)+24 \div 6+2 \times 9$
5. $20-12 \div(1+3) \times 2$	$6.3+6(5+4) \div 3-7$
7. $3+1^{2}$	$8 .(3+1)^{2}$

Directions: Evaluate each expression when $x=3$.

Expression	Value When $\boldsymbol{x}=\mathbf{3}$
$9.2 x$	
$10 . x+x$	
$11 \cdot x^{2}$	
$12 .(2 x)^{2}$	
$13.2 x+2 x+2 x+2 x$	
$14.8 x^{4}$	
$15.2 x^{2}$	
$16 \cdot x^{2}+x^{2}$	
$17 . x \cdot x$	

18. Which expressions from the table above are equivalent? Justify your answer.

Directions: Evaluate each expression when $r=12, s=2$, and $t=5$.

19. $r+t$	20. st	21. $0.5 r$
22. $\frac{t}{s}$	23. $\frac{s}{t}$	24. $s(r-t)$
25. $r+s t$	26. $r-s+t$	27. $r-(s+t)$
28. $10 r \div 12 t$	29. $3 s+12$	$30.60-48 \div r$
31. $3(2 s+9)$	32. $4 t+8 t$	33. t^{2}
34. 2^{t}	35. $3 t^{2}$	36. $(3 t)^{2}$
$37.8 t-5 t$	$\text { 38. } \frac{t-s}{r}$	$\text { 39. } \frac{r}{t-s}$
40. $\frac{r}{t}+\frac{s}{t}$	41. s^{5}	42. $s r^{2}$
43. $4 t^{2}+3 t^{2}$	44. $4(r-t)$	45. $4 r-4 t$
$\text { 46. }\left(\frac{s}{t}\right)^{3}$	$\text { 47. } \frac{3}{5}(r-s)$	48. $5 r-s^{3}+2$

49. The expression $\frac{5}{9}(F-32)$ can be used to determine the temperature in degrees Celsius depending on the temperature in degrees Fahrenheit.
b. Use the expression to complete the table below to determine the temperature in degrees Celsius depending on the temperature in degrees Fahrenheit.

Temperature (in degrees Fahrenheit)	Temperature (in degrees Celsius)
32°	
50°	
77°	
86°	
104°	

50. The expression $\frac{d}{2}$ can be used to determine the length of the radius of a circle based on the length of the diameter of the circle.
a. Use the expression to complete the table to show the length of the radius of a circle based on the length of the diameter of the circle.

Length of Diameter $(\mathbf{c m})$	Length of Radius (cm)
6	
10	
15	
30	
57	
100	

Activity 1: Working in a group, write as many equivalent expressions as you can for the following expressions. Explain how you know the expressions are equivalent.

Expression 1: $4 x+10$

Expression 2: $18 x$

Expression 3: $(2 x+3)+(2 x+3)+(2 x+3)$

Expression 4: $20 x^{3}$

Expression 5: $(3 x)^{4}$

Expression 6: $5 y \cdot 5 y \cdot 5 y$

Expression 7: $18 a+24+2 a$

Expression 8: $2 x^{2}+5$

Expression 9: $12 x$

Expression 10: $(4 x)^{3}$

Expression 11: $4 x^{3}$

Expression 12: $24 a+18 b$

6.2h Class Activity: Writing Algebraic Expressions to Model Real World Problems

1. Eight different classes at an elementary school are collecting canned goods for a food pantry. The eighth-grade class collected c cans. The statements below show the number of cans collected by the other grades. Match each statement to the correct expression.

The $7^{\text {th }}$ grade class collected two more cans than the $8^{\text {th }}$ grade class

$$
\frac{c-2}{2}
$$

The $6^{\text {th }}$ grade class collected twice as many
$2 c+10$ cans as the $8^{\text {th }}$ grade class

The $5^{\text {th }}$ grade class collected 2 fewer cans $2 c$ than the $8^{\text {th }}$ grade class

The $4^{\text {th }}$ grade class collected twice as many $c+10$ cans as the $7^{\text {th }}$ grade class

The $8^{\text {th }}$ grade class collected 10 fewer cans $2(c+2)$ than the $3^{\text {rd }}$ grade class

The $2^{\text {nd }}$ grade class collected 10 more cans
$c+2$
than the $6^{\text {th }}$ grade class

The $1^{\text {st }}$ grade class collected half as many
$c-2$ cans as the $5^{\text {th }}$ grade class
2. If the $8^{\text {th }}$ grade class collected 60 cans of food, how many cans of food did the school collect in all?
3. Clara is putting marbles in a jar. There are r red marbles in the bag. Match each statement about the other marble colors to the correct expression.

The number of orange marbles is twice the $\quad 2 r+3$ number of red marbles

The number of yellow marbles is three $\quad r^{3}$ times the number of orange marbles

The number of green marbles is the square of the number of red marbles

The number of blue marbles is the cube of $(2 r)^{3}$ the number of red marbles

The number of purple marbles is the cube of $2 r^{2}$ the number of orange marbles

The number of black marbles is three more than the number of orange marbles

The number of white marbles is twice the $3(2 r)$ number of green marbles
4. If there are 3 red marbles in the jar, how many marbles are there in all?
5. The baseball team is selling popcorn one week after school to raise money for uniforms. On Monday, they sold b bags of popcorn. Complete the table by writing expressions to represent the number of bags of popcorn they sold on the other days.

Number of Bags Sold Each Day In Words	Number of Bags Sold Each Day Algebraic Expression
On Monday they sold b bags of popcorn.	
On Tuesday they sold 15 more bags of popcorn than on Monday.	
On Wednesday they sold 20 more bags of popcorn than they did on Tuesday.	
On Thursday they sold 5 fewer bags than on Monday.	
On Friday they sold twice as many bags than they sold on Tuesday.	

6. Write an expression in simplified form to represent the total number of bags of popcorn the team sold on the five days.
7. If each bag of popcorn cost $\$ 1.50$, write an expression in simplified form for the amount of money raised based on the number of bags sold on Monday.
8. If the baseball team sold 45 bags of popcorn on Monday, how much money did they raise?
9. Brad's age is unknown. Charlie is 5 years older than Brad. Devon is twice as old as Charlie.
a. Write an expression in simplified form to represent each person's age.
b. Write an expression in simplified form to represent the sum of the boys' ages.
c. If Brad is 7 years old, how old are Charlie and Devon? What is the sum of the boys' ages?
10. The measure of the smallest angle in a triangle is x°. The measure of the largest angle in the triangle is twice the measure of the smallest angle. The third angle measures 20 degrees less than the largest angle. Write expressions to represent the measures of the angles in the triangle.

Smallest Angle: \qquad
Largest Angle: \qquad
Third Angle: \qquad
11. If the measure of the smallest angle is 40°, find the sum of the angle measures in the triangle.
12. Alexa bikes an unknown number of miles. Tom bikes 4 miles more than Alexa. Jesse bikes twice as far as Tom.
a. Write an expression to represent the total number of miles biked by Alexa, Tom, and Jesse.
b. If Alexa biked 10 miles, how far did Alexa, Tom, and Jesse bike in all?
13. John takes the average of three numbers. The first number is unknown. The second number is the square of the first number. The third number is four times larger than the second number.
a. Write an expression to represent the average of the three numbers.
b. If the first number is 6 , what is the average of the three numbers?
14. The length of a rectangular prism is unknown. The width of the prism is twice as long as the length. The height of the prism is three times as long as the width. Write an expression in simplified form for the volume of the rectangular prism in terms of the length.
15. Owen reads for an unknown number of minutes each night. His brother, Talen, reads 10 minutes longer. If Talen reads for 30 minutes each night, how many minutes will the two boys read together in the month of April? How many hours will the two boys read in the month of April?

Spiral Review

1. I am thinking of a number. When I add 5 to my number, the result is 12 . What number am I thinking of?
2. Use mental math to determine the value of a. $a-2=10$.
3. A number is less than 15 . Give three possible values for the number.
4. Talen is playing a game with his brother. The box says that the game is recommended for children ages 8 and up. Give some possible values for the ages of kids that the game is recommended for.

6.2h Homework: Writing Algebraic Expressions to Model Real World Problems

1. Eight different classes at an elementary school are collecting Box Tops. The eighth-grade class collected b Box Tops. The statements below show the number of Box Tops collected by the other grades. Match each statement to the correct expression.

The $7^{\text {th }}$ grade class collected three times as many Box Tops as the $8^{\text {th }}$ grade.

The $6^{\text {th }}$ grade class collected 10 more Box Tops than the $7^{\text {th }}$ grade.

The $5^{\text {th }}$ grade class collected 7 fewer Box Tops than the $6^{\text {th }}$ grade.

The $4^{\text {th }}$ grade class collected twice as many Box Tops as the $7^{\text {th }}$ grade class

The $3{ }^{\text {rd }}$ grade class collected the same number of Box Tops as the $8^{\text {th }}$ grade class

The $2^{\text {nd }}$ grade class collected 2 more Box Tops than the $7^{\text {th }}$ grade class

The $1^{\text {st }}$ grade class collected half as many Box Tops as the $7^{\text {th }}$ grade class

$$
3 b+3
$$

$$
b
$$

$$
3 b+2
$$

$$
3 b
$$

$$
\frac{3 b}{2}
$$

$3 b+10$

2(3b)
2. If the $8^{\text {th }}$ grade class collected 100 Box Tops, how many Box Tops did the school collect in all?
3. A recipe for trail mix uses chocolate chips, raisins, almonds, and peanuts. The ratio of raisins to chocolate chips is $2: 1$. The ratio of almonds to chocolate chips is $3: 1$. The ratio of peanuts to chocolate chips is also $3: 1$. Complete the table by writing expressions to represent the relationship between the ingredients in the trail mix.

Ingredient In Words	Ingredient In Relationship to Chocolate Chips
Chocolate Chips	
Raisins	
Almonds	
Peanuts	

4. Lisa used $1 \frac{1}{2}$ cups of chocolate chips in her batch of trail mix. How much of each of the other ingredients should she use if she is following the recipe above? How many total cups of trail mix will she have?
5. The cost of a shirt is unknown. A pair of jeans costs $\$ 20$ more than a shirt. Maggie purchases 3 shirts and 2 pairs of jeans.
a. Write an expression in simplified form to represent the total amount Maggie spent.
b. If a shirt costs $\$ 25$, how much did Maggie spend?
6. James is making building a garden to plant vegetables. He wants the length of the garden to be twice the size of the width.
a. Draw a picture of the garden James is building.
b. Write an expression in simplified form to represent the perimeter of the rectangle.
c. Write an expression in simplified form to represent the area of the rectangle.
d. James decides he has room to make the length of the garden 15 feet. What is the width of the garden?
e. Based on the information given in part d., what is the perimeter of the garden James is building?
f. Based on the information given in part d., what is the area of the garden James is building?
7. Peter is purchasing movie tickets online. The cost of a movie ticket is $\$ 12.00$ plus a service fee of $\$ 1.50$ per ticket.
a. Write an expression that represents the cost of movie tickets based on the number of movie tickets Peter purchases.
b. If Peter purchases 4 movie tickets, how much will he spend?

6.2i Self-Assessment: Section 6.2

Consider the following skills/concepts. Rate your comfort level with each skill/concept by checking the box that best describes your progress in mastering each skill/concept. Corresponding sample problems, referenced in brackets, can be found on the following page.

Skill/Concept	Minimal Understanding 1	Partial Understanding 2	Sufficient Mastery 3	Substantial Mastery 4
1. Identify parts of an algebraic expression using mathematical language.				
2. Apply the properties of operations to generate equivalent expressions, including the simplified form of an algebraic expression.				
3. Simplify numeric expressions containing exponents using the Order of Operations.				
4. Evaluate algebraic expressions for specific values of the variable, including expressions with exponents and expressions that arise from formulas.				
5. Write algebraic expressions to represent real world problems.				

Sample Problems for Section 6.2

Square brackets indicate which skill/concept the problem (or parts of the problem) align to.

1. Identify the terms, constants, coefficients, and like terms in the following algebraic expression. [1]

Expression	Terms	Constants	Coefficients	Like Terms
$2 x+4 y+x+3 y+9$				

2. Create an algebraic expression that has four terms and meets the following requirements: the expression has no like terms, the expression contains a constant, one of the coefficients is 3. [1]
3. Write three expressions that are equivalent to the expression $4 x+32$. [2]
4. Write three expressions that are equivalent to the expression $x+x+4(x+3)$. [2]
5. Write the expression $6 x+42$ as the product of two factors. [2]

Directions: Simplify the following expressions. [2]

a. $4 b+3 b$	b. $p+p+p+p+p+p$
c. $13 f-6 f$	d. $9 m+3 m+8$
e. $9 h+8+h+2$	f. $5 x+x+x+x+4 y$
g. $\frac{1}{2} x+\frac{1}{2} x$	h. $\frac{5}{8} y-\frac{1}{2} y$
i. $1.2 x+0.9 x$	j. $a+6 \frac{3}{4} a+b-\frac{2}{3} b$
k. $9 y-(2 y+3 y)$	l. $9 y-2 y+3 y$

m. $2(x+3)$	n. $9(3 x+1)$
o. $6(x-7)$	p. $5(2+3 x)$
q. $\frac{2}{3}(x-12)$	r. $\frac{1}{10}(50 x+85)$
s. $4(x+6)+x$	t. $3(7 x-5)-8 x$
u. $4+2(x+9)$	v. $6(2 x+1)+5(x+4)$

8. What does it mean to simplify an algebraic expression? Use examples to support your ideas. [2]
9. Use the figure below to complete the problem. [2]

a. Write an expression in simplified form to represent the perimeter of the rectangle.
b. Write an expression in simplified form to represent the area of the rectangle.
c. If $x=4$, find the perimeter and area of the rectangle.
10. Complete the table below. [2]

Exponential Form	Expanded Form	Simplified Form
a. 4^{3}		
b. 5^{2}		
c. 3^{4}	$9 \cdot 9$	
d.	$10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$	
e.	$2 \cdot 3 \cdot 3 \cdot 3$	
f.	$x \cdot x \cdot x \cdot y \cdot y$	
g. x^{2}	$2 \cdot 2 \cdot 2 \cdot x \cdot x \cdot x \cdot x \cdot x$	
h.	$4 \cdot 4 \cdot a \cdot a \cdot a \cdot a$	
i.		
j.		
k. $3 x^{3}$		
l. $(3 x)^{3}$		

11. Use the work of the three students shown below to answer the questions that follow. [3]

Kayla
$6^{2}-2 \times 5+4$
$12-2 \times 5+4$
$12-10+4$
$2+4$
6

Abe
$6^{2}-2 \times 5+4$
$36-2 \times 5+4$
$36-10+4$
36-14
22

Isaac
$6^{2}-2 \times 5+4$
$36-2 \times 5+4$
$36-10+4$
$26+4$
30
a. Which student simplified the expression $6^{2}-2 \times 5+4$ correctly?
b. Describe the error(s) made by the students who did not simplify the expression correctly.
12. Simplify each expression. [3]

a. $2 \cdot 4^{2}$	b. $(2 \cdot 4)^{2}$
c. $2^{3}+4(5+2)$	d. $4^{3} \div 2+8$
e. $6 \cdot 2^{2}+10-8$	f. $(2+3)^{2}-10 \cdot 3$

13. Evaluate each expression when $r=2, s=8$, and $t=24$. [5]

a. $r+s$	b. $r s$	c. $\frac{1}{3} t$
d. $\frac{t}{s}$	e. $\frac{s}{t}$	f. $s(r+t)$
g. $t-(s+r)$	h. $10+t \div 2$	i. s^{2}
j. $3 r^{3}$	k. $(3 r)^{3}$	$1 . \frac{r}{t-s}$
m. $20-2 r^{3}+5$	n. $10^{2}+2(t-r)$	o. $\left(\frac{24}{8}\right)^{2}$

14. Mrs. Haney is married and has four kids. Use the clues below to determine the ages of the members of the Haney family. Her kids' names are Ethan (oldest), Will (second oldest), Sam (third oldest), and Erik (youngest). [5]

Age of Mrs. Haney's Family Members In Words	Age of Mrs. Haney's Family Members Algebraic Expression
Will is y years old.	
Ethan is two years older than Will.	
Sam's age is half of Ethan's age.	
Mrs. Haney's age is eight more than three times Ethan's age.	
Mr. Haney is the same age as Mrs. Haney.	
Erik is three years younger than Sam.	

15. Write an expression in simplified form to represent the sum of the Haney family's ages in terms of Will's age. [5]
16. If Will is 8 years old, what is the sum of the ages of the Haney family?
17. Owen dumps out his piggy bank to see how much money he has. He has twice as many dimes as quarters. He has three times as many pennies as dimes. He has the same number of nickels as quarters. Complete the table by writing expressions to represent the number of each type of coin Owen has. [5]

Types of Coins In Words	Number of Coins Algebraic Expression
Quarters	
Dimes	
Nickels	
Pennies	

18. Write expressions for the value of the coins Owen has.

Types of Coins In Words	Value of Coins Algebraic Expression
Quarters	
Dimes	
Nickels	
Pennies	

19. If Owen has 22 quarters, what is the value of the coins in Owen's piggy bank?
20. Maria downloads an unknown number of apps on her tablet in the month of June. Her sister downloads 3 less apps than her that month. Each app costs \$1.99. [5]
a. Write an expression in simplified form for the total number of apps downloaded by Maria and her sister in the month of June.
b. Write an expression in simplified form for the total cost of the apps downloaded by Maria and her sister.
c. If Maria downloads 8 apps during the month of June, how much did Maria and her sister spend on apps in June?

Section 6.3: Equations and Inequalitities in One Variable

Section Overview:

In this section, students transition from expressions to equations and inequalities. The first lesson builds on student understanding of what an expression is. Students start by creating tables of values for a given expression. For example, students will create a table of values for the expression $x+5$ when $x=0,1,2,3$, etc. This is followed up with the question, "For what value of x does the expression $x+5$ evaluate to 7 ?" When students consider this question, they are informally creating and solving the equation $x+5=7$. Here, an important connection is made between expressions and equations: When we evaluate an expression, we choose the values for x; however, when we solve an equation, we find the value for x in the expression that causes the expression to evaluate to a specific output or value. Students learn that the solution to an equation is the number that makes the equation true when substituted for the unknown. Next, students use substitution to determine whether a given number is the solution of an equation. From here, students numerically investigate the Properties of Equality to understand the "legal" moves when constructing and deconstructing equations and inequalities. Students use the Properties of Equality to construct equations and then learn that the same properties that allow us to build equations are the same properties that allow us to deconstruct equations back to their simplest form which reveals the solution. The connection is made to the problem-solving strategy "working backward". Given an equation, students identify: 1) What was done to the unknown to change it into a different number? 2) How do I "undo" what was done to the unknown? Students build fluency with solving one-step equations. These skills are then applied to solve real world problems. In the second part of the section, students build on their understanding of equations to learn about inequalities. First, they look at real world examples that can be modeled with inequalities. They realize that, unlike the equations they have been solving, inequalities often have infinitely many solutions and that a number line diagram can be an effective tool for representing the solutions to an inequality. Next, they learn how to solve inequalities, again relying on the understanding and skills gained when solving equations. Lastly, they write and solve inequalities to represent real world situations that have constraints. An important part of this process is being able to interpret the solution set in the context.

Concepts and Skills to Master:

By the end of this section, students should be able to:

1. Understand what the solution to an equation is.
2. Use substitution to determine whether a given number is a solution to an equation.
3. Solve one-step equations, including equations with rational numbers.
4. Write and solve equations to represent real-world problems.
5. Understand that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions and represent the solutions using a number line diagram.
6. Solve one-step inequalities, including inequalities with rational numbers.
7. Write and solve inequalities to represent real-world problems in which constraints are given. Interpret the solution set in the context of the problem.

6.3a Class Activity: Equations and their Solutions

Directions: Make a table of values to evaluate the expression for the values of x given. Then, answer the questions below the table. $\mathbf{n} \# \square$

1. $x+5$	
x	$x+5$
0	
1	
2	
5	
10	

2. What value for x makes the expression $x+5$ evaluate to 7 ?
3. What value for x makes the expression $x+5$ evaluate to 15 ?
4. $3 x$

x	$3 x$
0	
1	
2	
3	
10	

8. What value for x makes the expression $3 x$ evaluate to 3 ?
9. What value for x makes the expression $3 x$ evaluate to 9 ?
10. $x-2$

x	$x-2$
2	
3	
4	
8	
15	

5. What value for x makes the expression $x-2$ evaluate to 0 ?
6. What value for x makes the expression $x-2$ evaluate to 13 ?
7. $\frac{x}{4}$

x	$\frac{x}{4}$
0	
4	
8	
12	
16	

11. What value for x makes the expression $\frac{x}{4}$ evaluate to 2 ?
12. What value for x makes the expression $\frac{x}{4}$ evaluate to 4 ?
13. You could have created an equation to represent many of the problems on the previous page. For example, in \#2, you were asked:

What value for x makes the expression $x+5$ equal to 7 ? In other words, when does the expression $x+5$ equal 7? An equation is formed by setting two expressions equal to each other.

Expression 1 Expression 2

A solution to an equation is a number that makes the equation true when substituted for the unknown. Another way to think of this is to ask the question, "For what value of x does the expression $x+5$ evaluate to 7 ?"

Directions: Determine whether the given number is the solution to the equation given. Justify your answer.

14. $x+8=15$ Does $x=7$?	$\text { 15. } x-2=9$ Does $x=7$?	$\text { 16. } 3 x=24$ Does $x=8$?
17. $8 x=4$ Does $x=\frac{1}{2}$?	18. $\frac{x}{2}=12$ Does $x=6$?	$19.25-x=19$ Does $x=6$?
20. $\frac{42}{x}=6$ Does $x=7$?	$\text { 21. } x+\frac{2}{3}=2 \frac{1}{6}$ Does $x=1 \frac{1}{2}$?	$\text { 22. } 50 x=5$ Does $x=10$?
$\text { 23. } 12=x+8$ Does $x=4$?	$\text { 24. } 35=5 x$ Does $x=30$?	$25.1=x-9$ Does $x=10$?

Directions: Solve the following equations using mental math. Justify your answer.

$26 . x+10=14$	$27 . x-5=3$	$28.4 x=20$
29. $\frac{x}{7}=3$	$30 \cdot \frac{40}{x}=5$	$31.7+x=15$
$32.9-x=8$	$33.49=7 x$	$34.3=\frac{x}{5}$
$35 . x+\frac{1}{2}=\frac{5}{2}$	$36.0 .1 x=10$	$37 . \frac{1}{4} x=6$

Spiral Review

1. Simplify the expression. If the expression is already simplified, write "already simplified".

a. $m+m+m+m$	b. $4 x+5 x+x$
c. $5 x+5 y$	d. $4 x+8+x-3$

2. Evaluate each expression for $x=5$.

a. $3 x$	b. $3+x$
c. x^{3}	d. $2 x^{3}$

3. I am thinking of a number. When I divide the number by 3 , I get 15 . What is the number?
4. After Mario paid $\$ 2.75$ for school lunch, he had $\$ 1.25$ left. How much money did Mario have before he paid for school lunch.

6.3a Homework: Equations and Their Solutions

Directions: Make a table of values to evaluate the expression for the values of x given. Then, answer the questions below the table.

1. $x+2$		4. $x-7$	
x	$x+2$	x	$x-7$
0		7	
1		8	
2		9	
3		10	
5		11	

2. What value for x makes the expression $x+2$ evaluate to 5 ?
3. What value for x makes the expression $x+2$ evaluate to 7 ?
4. $5 x$

x	$5 x$
0	
1	
2	
3	
10	

8. What value for x makes the expression $5 x$ evaluate to 10 ?
9. What value for x makes the expression $5 x$ evaluate to 50 ?
10. What value for x makes the expression $x-7$ evaluate to 1 ?
11. What value for x makes the expression $x-7$ evaluate to 4 ?
12. $\frac{x}{10}$

x	$\frac{x}{10}$
10	
20	
30	
50	
100	

11. What value for x makes the expression $\frac{x}{10}$ evaluate to 2 ?
12. What value for x makes the expression $\frac{x}{10}$ evaluate to 5 ?

Directions: Write an equation to represent each problem. Then, solve the equation.
13. For what value of x does the expression $x+6$ evaluate to 8 ?
14. For what value of x does the expression $x-9$ evaluate to 3 ?
15. For what value of x does the expression $10 x$ evaluate to 70 ?
16. For what value of x does the expression $\frac{x}{4}$ evaluate to 40 ?

Directions: Determine whether the given number is the solution to the equation given. Justify your answer.

$\begin{aligned} & \text { 17. } x+10=45 \\ & \text { Does } x=55 ? \end{aligned}$	18. $x-6=12$ Does $x=6$?	$\text { 19. } 10=x+4$ Does $x=6$?
$20.9 x=45$ Does $x=9$?	$21.4 x=44$ Does $x=11$?	22. $\frac{x}{8}=9$ Does $x=72$?
$\text { 23. } x+0.03=0.6$ Does $x=0.3$?	24. $40=\frac{x}{8}$ Does $x=5$?	25. $\frac{3}{5} x=36$ Does $x=60$?
$\text { 26. } 3=x-7$ Does $x=4$?	27. $x+\frac{2}{3}=1$ Does $x=\frac{1}{3}$?	28. $\frac{1}{3}=\frac{2}{3} x$ Does $x=\frac{1}{2}$?
29. $\frac{x}{0.1}=30$ Does $x=300$?	$\text { 30. } 16=x \div \frac{1}{2}$ Does $x=8$?	$31.32 x=8$ Does $x=\frac{1}{4}$?

Directions: Solve the following equations using mental math. Justify your answer.

$32 . x+2=10$	$33 . x-8=7$	$34.8 x=32$
$35 \cdot \frac{x}{10}=40$	$36.0 .5 x=3$	$37 \cdot \frac{x}{12}=5$
$38.4+x=9$	$39 \cdot \frac{x}{12}=8$	$40 . x-7=8$
$41 . x-15=15$	$45.0 .1 x=10$	$46 . \frac{1}{4} x=6$

1. When Roberto left his house in the morning to walk to school, his mom gave him some money for lunch. On his walk to school, he found a $\$ 5$ bill on the sidewalk. When he got to school, he counted his money and found he had $\$ 8$. How much money did his mom give him when he left in the morning?
2. Sam opened a bag of jellybeans and ate three of them. She had 12 jellybeans left in the bag. How many jellybeans were in the bag to start?
3. Ted, Shannon, and Emilio raked leaves one Saturday for Ted's father. Ted's father gave the three kids some money to share evenly. When Shannon got home, she counted her money and she had $\$ 15$. How much money did Ted's father pay the kids in total to rake the leaves?
4. Sandia went up to the movie ticket counter and asked for 4 tickets to a movie. The cashier told her the total would be $\$ 32$. How much is each movie ticket?

Directions: Solve the following number riddles.
5. I am thinking of a number. When I subtract 3 from my number, the result is 15 . What number am I thinking of?
6. I am thinking of a number. When I add 6 to my number, the result is 13 . What number am I thinking of?
7. I am thinking of a number. When I multiply my number by 4 , the result is 24 . What number am I thinking of?
8. I am thinking of a number. When I divide my number by 5 , the result is 8 . What number am I thinking of?
9. How do you use the problem-solving strategy "work backward" to figure out the number riddles above?

Directions: Write a number riddle to match each equation. Then, explain how to solve the number riddle.
10. $n+5=9$
11. $x-1=8$
12. $7 n=42$
13. $\frac{x}{3}=7$

Directions: Write an equation to represent each number riddle. Describe what you need to do to find the unknown number and then find the unknown number.

14 . When 5 is added to a number, the result is 7 . What is the number?
15. When 8 is subtracted from a number, the result is 3 . What is the number?
16. When a number is multiplied by 6 , the result is 48 . What is the number?
17. When a number is divided by 10 , the result is 5 . What is the number?

Spiral Review

1. Simplify the expression. If the expression is already simplified, write "already simplified".

a. $13 y-5 y+2 y$	b. $10 g+3$
c. $3+4 x$	d. $3(4 x)$

2. Show some different ways the expression $30 x-18$ can be written as the product of two factors.
3. You must be at least 54 inches to ride a roller coaster at an amusement park. Al is exactly 54 inches tall. Can he ride the roller coast?
4. To safely enter an underground parking lot, a car must be less than 8 feet tall. Christina's Honda Pilot is exactly 8 feet tall. Can she safely enter the parking garage in her car?

6.3c Class Activity: Constructing and Deconstructing Equations

Activity 1: Transforming an Equation - What are the "Legal" Moves?

a. Consider the equation $12=12$. Is this a true statement?
b. Apply each operation to the equation $12=12$ and tell whether the resulting equation is still true. The first one has been done for you.

Starting Equation	Operation to Apply	Resulting Equation	Is the resulting equation true or false?
$12=12$	Add 4 to both sides.	$\begin{aligned} 12+4 & =12+4 \\ 16 & =16 \end{aligned}$	Yes
$12=12$	Add 8 to both sides.		
$12=12$	Add 4 to the left side of the equation only.		
$12=12$	Multiply both sides of the equation by 3 .		
$12=12$	Divide both sides of the equation by 3 .		
$12=12$	Multiply the left side of the equation by 3 and add 3 to the right side of the equation.		
$12=12$	Multiply both sides of the equation by $\frac{1}{2}$.		
$12=12$	Multiply the left side of the equation by $\frac{1}{2}$ and multiply the right side of the equation by 2 .		

c. Look back through the chart. What are "legal" moves to apply to an equation to transform it into an equivalent equation?
-

Activity 2: Constructing Equations

Directions: Start with the equation given. Apply the action to construct an equivalent equation.

Original Equation	Action	Transformed Equation
a. $\quad x=5$	Add 3 to both sides of the equation.	
b. $x=10$	Subtract 8 from both sides of the equation.	
c. $x=4$	Multiply both sides of the equation by 5.	
d. $x=12$	Divide both sides of the equation by 4.	

Activity 3: Deconstructing Equations

Directions: The equations below are the equations you built in the previous activity. State the action you need to perform to deconstruct the equation. In other words, how can you get the equation back to what is was at the start of Activity 2 to determine the value of x ?

Transformed Equation	Action	Original Equation
a. $x+3=8$		$x=10$
b. $x-8=2$		$x=4$
c. $5 x=20$		$x=12$
d. $\frac{x}{4}=3$		

Activity 4: An equation is given. Select all the equations that are equivalent to the equation given. Justify your answer on the line provided.
a. Given: $x=10$
$\square 2 x=12$ $\qquad$$x+4=14$ \qquad
$\square \frac{x}{2}=20$ \qquad
$\square 3 x=30$ $\qquad$$x-6=4$ \qquad

Bonus:$x+x=20$

Spiral Review

1. Simplify the expression. If the expression is already simplified, write "already simplified".

a. $4(x-5)$	b. $2(5 x+10)+6 x$
c. $\frac{3}{5}(25 x+10)$	d. $0.1(x-90)$

2. Write three equivalent expressions for the expression $10 x$.
3. What number is 20% of 60 .
4. 60 is 20% of what number?

6.3c Homework: Constructing and Deconstructing Equations

Directions: Determine whether the following actions are "legal" moves when transforming an equation. Write "Y" for yes or "N" for no. For the moves that are "legal" moves, name the property of equality. The first two have been done for you.

Action	Is it a Legal Move When Transforming an Equation?	If Yes, Name the Property of Equality
1. Add 5 to both sides of the equation.	Yes	Addition Property of Equality
2. Add 5 to the left side of the equation and subtract 5 from the left side of the equation.	No	
3. Multiply one side of the equation by 7 .		
4. Subtract 8 from both sides of the equation.		
5. Multiply one side of the equation by 10 and divide the other side of the equation by 10 .		
6. Divide both sides of the equation by 4 .		
7. Bonus: Divide the right side of the equation by $\frac{1}{3}$. Multiply the left side of the equation by 3 .		
8. Bonus: Divide one side of the equation by 0.01 and multiply the other side of the equation by 100 .		
9. Bonus: Multiply one side of the equation by 10 . Multiply the other side of the equation by 5 and then by 2 .		

Directions: In each problem below, a starting equation is given. In the middle column, the equation has been transformed into an equivalent equation. State the action that produced the equivalent equation. The first one has been done for you.

Original Equation	Transformed Equation	Action
$10 . x=6$	$x+2=8$	Add 2 to both sides of the equation.
$11 . x=12$	$\frac{x}{3}=4$	
$12 . x=9$	$6 x=54$	
$13 . x=14$	$x-3=11$	
$14 . x=7$	$0=5=12$	
$15.5=x$	$8=\frac{x}{6}$	
$16.48=x$		

Directions: The equations below are the equations you built in the table above. State the action you need to perform to deconstruct the equation back to the original equation. In other words, how can you get the equation back to what it was at the start? The first one has been done for you.

Transformed Equation	Action	Original Equation
$17 . x+2=8$	Subtract 2 from both sides of the equation.	$x=6$
$18 . \frac{x}{3}=4$		
$19.6 x=54$		
$20 . x-3=11$		
$21 . x+5=12$		
$22.0=x-5$		
$23.8=\frac{x}{6}$		

Directions: An equation is given. Select all the equations that are equivalent to the equation given. Justify your answer on the line provided.
24. Given: $x=8$
$\square x+5=13$ \qquad
$\square 3 x=11$ \qquad
$\square \frac{x}{2}=2$
$\square x-8=0$ \qquad
$\square 4 x=2$ \qquad
25. Given: $x=24$
$\square x-5=29$
$\square 2 x=48$ \qquad
$\square \frac{x}{3}=8$ \qquad
$\square x-4=24$ \qquad
$10+x=14$

6.3d Class Activity: Solving Equations with Whole Numbers

Activity 1: Solving Equations by Working Backward

Directions: In each of the problems below, an operation has been performed to an unknown number to change it into a different number. Identify "what was done to the unknown number". Then, tell how you can "undo what was done". Show your solving actions in the last column. Verify the solution. The first one has been done for you

Equation	What was done to the unknown number?	How do you undo what was done?	Solving Actions
a. $x+6=13$	Six was added to the unknown number	Subtract six from both sides of the equation	$x+6=13$ $-6=-6$
b. $x+4=9$		$x+0=7$ $x=7$	
c. $y-5=18$			

d. $n-8=3$			
e. $4+y=10$			
f. $6=t-8$			
g. $11=c+5$			
h. $7 x=14$			
j. $\frac{x}{5}=4$			
i. $8 x=48$			

l. $15=3 x$			
m. $\frac{x}{11}=6$			
n. $g-12=39$			
o. $4 g=64$			
p. $\frac{x}{14}=8$			
q. $7=\frac{b}{8}$			
x. $x-372=57$			
w. $800=25 x$			
t. $\frac{n}{54}=15$			
u. $n+840=1,574$			
v. $575=225+x$			

y. $181+x=190$			
z. $729=\frac{f}{3}$			

Directions: Solve the following equations. Show the solving actions. Verify the solution. Lullusum

1. $n+8=28$	2. $x-4=9$	$3 . b+6=15$
4. $9 x=54$	5. $\frac{p}{20}=4$	$6 . n-10=21$
$7 . n+10=21$	8. $7 y=105$	$9 . \frac{g}{16}=16$
$10.5 x=5$	$11 \cdot \frac{x}{5}=1$	$12 \cdot \frac{x}{5}=5$
$13.12 x=144$	$14 . x-391=53$	$15 \cdot \frac{g}{56}=5$
$16 . x+402=9,140$		

$22.45=x-90$	$23.5+t=18$	$24.16=\frac{x}{2}$
$25.17=6+x$	$26.48=6 x$	$27.12=x-36$
		$30.5 x+3 x=64$
$28 . x+x+x=15$	$29.7 x-x=42$	

Spiral Review

1. Which property is being illustrated in the equation below?
$a+5=5+a$
2. Give two different values for x that make the following inequality true. $x<10$
3. Find the sum. $\frac{3}{8}+\frac{7}{24}$
4. Find the quotient. $\frac{3}{8} \div \frac{7}{24}$

6.3d Homework: Solving Equations with Whole Numbers

Directions: Solve the following equations. Show the solving actions. Verify the solution.

1. $x+2=5$	2. $y-8=9$	3. $r-3=11$
4. $8 x=40$	5. $x-3=16$	6. $\frac{t}{5}=2$
7. $q-11=30$	8. $5 y=60$	9. $\frac{x}{8}=4$
10. $x+45=60$	11. $9 x=108$	12. $\frac{t}{15}=5$
13. $4+x=10$	14. $108=6 x$	$15.54=\frac{t}{9}$
16. $12=x+3$	17. $120=40+x$	18. $\frac{y}{14}=14$
19. $15 x=300$	$20.600+x=1,932$	$21.18=\frac{d}{22}$
22. $6 x=1,032$	23. $8,054=t-728$	24. $4,000=100 x$
25. $4 x+2 x=48$	26. $x+x+x+x=120$	27. $5 x-2 x=42$
6WB6-166		

6.3e Class Activity: Solving Equations with Rational Numbers

Activity 1: Solving Equations by Working Backward

Directions: In each of the problems below, an operation has been performed to an unknown number to change it into a different number. Identify "what was done to the unknown number". Then, tell how you can "undo what was done". Show your solving actions in the last column.

Equation	What was done to the unknown number?	How do you undo what was done?	Solving Actions
a. $n+\frac{2}{3}=\frac{7}{3}$			
b. $b+1 \frac{1}{2}=6$			
c. $x-\frac{3}{5}=7 \frac{2}{5}$			
d. $\frac{7}{8}=x+\frac{1}{2}$			
e. $n-\frac{4}{9}=\frac{1}{4}$			
f. $x+0.24=8.78$			

g. $n-1.2=8$			
h. $5.6=x-1.02$			
i. $0.2 x=4.8$			
j. $\frac{x}{0.2}=4.8$			
k. $\frac{2}{3} x=18$			
o. $6.4=\frac{x}{4}$			
m. $12 x=6$			

p. $4.5 x=90$			

Directions: Solve the following equations. Show the solving actions. Verify the solution.

1. $x+1 \frac{1}{4}=3 \frac{7}{8}$	2. $x-8=4.03$	3. $n+\frac{5}{12}=\frac{19}{24}$
4. $x+\frac{9}{10}=5 \frac{1}{10}$	5. $0.04 t=12$	6. $5 x=1$
7. $\frac{7}{10} x=42$	8. $0.05 x=2$	9. $\frac{5}{6} c=\frac{3}{5}$
10. $\frac{y}{0.03}=320$	11. $3 x=9$	12. $9 x=3$
13. $n+\frac{7}{10}=0.75$	14. $n-\frac{2}{3}=3 \frac{4}{9}$	15. $x+1.6=19.4$
16. $n-\frac{5}{16}=\frac{7}{16}$	17. $x+3 \frac{1}{2}=4 \frac{2}{3}$	18. $y-0.25=2.75$
19. $x-13=2.9$	20. $y+2.25=10$	$\text { 21. } \frac{y}{1.4}=10$
22. $1.2 x=9.6$	23. $\frac{4}{9} y=4$	24. $0.01 t=5$
25.12.6 $=x+4.8$	$26.144=1.2 f$	$\text { 27. } 20.5=\frac{x}{4}$
6WB6-169		f Utah Middle School Math Project in partn Education. Licensed under Creative Comm

$28.8 x=100$	$29.6 x=8$	$30.0 .25 x=0.4$
$31.0 .1 x+0.4 x=7$	$32 . x+4 x=4$	$33 \cdot \frac{1}{2} x+\frac{3}{8} x=21$

Spiral Review

1. Compare using $<$,$\rangle , or =$.
-3.1 \qquad -3
-3 \qquad -3.1
2. Ray and his dad are fishing. The minimum length a catfish needs to be to keep it is 18 inches. They catch a fish that is 18.5 inches. Can they keep the fish or do they need to throw it back?
3. Find the area of a parallelogram with a base of 5 inches and a height of 8 inches.
4. Find the area of a triangle with a base of 5 inches and a height of 8 inches.

6.3e Homework: Solving Equations with Rational Numbers

Directions: Solve the following equations. Show the solving actions. Verify the solution.

1. $x+\frac{1}{8}=\frac{3}{8}$	2. $n-\frac{1}{3}=\frac{4}{9}$	3. $y+1 \frac{4}{5}=5$
4. $y+0.75=2.5$	5. $0.5 t=10$	6. $5 x=1.5$
7. $18 x=9$	8. $\frac{x}{0.01}=5,000$	9. $\frac{3}{5} b=\frac{3}{5}$
10. $\frac{3}{4} a=9$	11. $\frac{5}{12}+x=\frac{35}{36}$	12.7 7 x -8.2
13. $20=0.2 h$	14. $0.9 n=5.4$	$15.20=\frac{5}{4} x$
$\text { 16. } n-\frac{3}{4}=2 \frac{1}{2}$	$\text { 17. } 1.5=\frac{y}{30}$	18. $1.2 x=60$
19. $21=5 x$	20. $0.2 x=0.15$	$\text { 21. } \frac{y}{4}=3.05$
22. $x-2 \frac{2}{3}=3 \frac{1}{4}$	23. $\frac{1}{4} y=5$	24. $4.5=1 \frac{1}{4}+x$
$\text { 25. } \frac{2}{3}+y=\frac{8}{9}$	$\text { 26. } \frac{5}{4} x=100$	$27.60=\frac{y}{0.5}$
28. $12 x=100$	29. $2 x=15$	$\text { 30. } x+2.8=3 \frac{3}{5}$
31. $\frac{5}{8} y-\frac{1}{2} y=5$	32. $x+\frac{1}{2} x=18$	33. $2 x-0.8 x=18$

6.3f Class Activity: Writing Equations to Solve Real World Problems

Directions: Write an equation to represent each problem. Then, solve the equation. Make sure to label your answer. $n \# m$

1. Clarissa is trying to save $\$ 399$ to buy a new gaming station. She has already saved $\$ 140$. Write and solve an equation to represent the amount Clarissa still needs to save.
2. From 8 am to 11 am this morning, the temperature rose $11^{\circ} \mathrm{F}$. If the temperature at 11 am was $37^{\circ} \mathrm{F}$, what was the temperature at 8 am ?
3. Bianca needs $2 \frac{1}{2}$ cups of flour to make a batch of cookies. If Bianca has put $1 \frac{1}{4}$ cups of flour in the mixing bowl so far, how many more cups of flour does she still need to add to the mixing bowl?
4. Marco and his friends are on a hike. After they have hiked 3 miles, they reach a sign telling them they are $\frac{2}{3}$ of the way finished with the hike. How long is the hike?
5. Two sides of an isosceles triangle measure 5 in . and 5 in . If the perimeter of the triangle is $13 \frac{1}{2} \mathrm{in}$., what is the measure of the third side of the triangle?
6. Maggie is buying movie tickets that cost $\$ 9.50$ each. If her total is $\$ 47.50$ before tax, how many movie tickets did she purchase.
7. Eddie, Jax, and Amanda are raking leaves in their neighborhood. They split their earnings evenly. If each person received $\$ 26$, how much money total did the three kids earn raking leaves?
8. Trevor received money from friends and family for graduation. He put 40% of the money that was given to him in his savings account. If he put $\$ 60$ in his savings account, how much money was given to Trevor at graduation?
9. A car is traveling 60 miles per hour. How long will it take the car to drive 210 miles?
10. Hillary bought 3 shirts that each cost the same amount. If her total before tax is $\$ 59.97$, how much was each shirt.
11. The area of a rectangle is 48 square centimeters. If the base of the rectangle measures 12 cm , what is the height of the rectangle?
12. Peter is checking his suitcase at the airport. He puts it on the scale and the person working at the counter tells him that his bag weighs $1 \frac{1}{2}$ times the weight limit for checked baggage. If Peter's bag weighs 75 pounds, what is the weight limit for checked bags?
13. Seventy-five percent of the students in $6^{\text {th }}$ grade voted to go to the planetarium on their next field trip. If 24 students voted to go to the planetarium, how many students are in $6^{\text {th }}$ grade?
14. Steven got eighty-five percent of the questions on his final math exam correct. If there were 20 questions on the exam, how many did Steven answer correctly?
15. Mr. Romero has a big container of slime that he is distributing to his class for a science experiment. He needs $\frac{1}{3}$ cup of slime for each student to do the experiment. If he can give 16 students slime to do the experiment, how much slime was in the container to begin with?
16. Meg is making a wooden frame in the shape of a rectangle to go around a picture. The base of the frame measures 10.5 inches and the height of the frame measures 13 inches. Meg has a long piece of wood that she is cutting the pieces of the frame from. After she cuts off the pieces she needs to make the frame, she has $1 \frac{1}{2}$ feet of the wood board left. How long was the board at the start?
17. The ratio of boys to girls entered in an upcoming spelling bee is 3 to 2 . If there are 200 students competing in the spelling bee, how any are boys and how many are girls?
18. The fifth-grade class at Lincoln Elementary collected half as many cans of food for a canned food drive as the sixth-grade collected. Together, the classes collected 132 cans of food. How many cans of food did each class collect.
19. The perimeter of an equilateral triangle is 51 mm . What is the length of each side of the triangle?
20. Ali can bike ride 12 miles per hour. How long will it take her to bike 20 miles?
21. The area of a triangle is $42 \mathrm{in}^{2}$. If the height of the triangle is 6 in ., what does the base of the triangle measure?
22. The area of a trapezoid is 21 square feet. The height of the trapezoid is 6 feet. If one of the bases is 3 feet long, what is the length of the other base?

Spiral Review

1. Compare using $<$,$\rangle , or =$.

10 \qquad 0
2. Yvonne has a goal to spend no more than $\$ 75$ on school supplies. Her total is exactly $\$ 75$. Did she reach her goal?
3. Solve the following equation for x. $\frac{3}{4} x=24$
4. Simplify the expression shown below.
$\frac{5}{6}(30)+9^{2}-15 \div 3$

6.3f Homework: Writing Equations to Solve Real World Problems

Directions: Write an equation to represent each problem. Then, solve the equation. Make sure to label your answer.

1. Charles and his 3 friends went out to dinner. They split the bill evenly. If each person paid $\$ 12.50$, what was the total cost of the meal?
2. Owen is buying a game that costs $\$ 21.99$. If he gives the cashier $\$ 25$, how much change will he get?
3. After buying school lunch, Terry has $\$ 4.40$ left. If school lunch costs $\$ 2.50$, how much did Terry have before she bought school lunch?
4. Talen really wants to buy a new bike. His parents told him that if he covers $\frac{3}{4}$ of the cost of a bike, they will pay for the rest. If Talen has to pay $\$ 187.50$, what is the total cost of the bike?
5. Penny and Ben are out picking apples. Penny picked 26 apples. Together, they picked 60 apples. How many apples did Ben pick?
6. Tim made 60% of the free throws he shot last season. If he made 24 free throws last season, how many free throws did he shoot?
7. A group of students were taking the bus home from school. At the first stop, 8 students got off the bus. Then, there were 33 students on the bus. How many students were on the bus when it left the school?
8. At a certain high school, 58% of the students take Spanish as their foreign language. If 493 students take Spanish, how many students attend the high school?
9. The height of a parallelogram is $3 \frac{2}{3}$ feet. If the area of the parallelogram is 44 feet 2, what is the length of the base of the parallelogram?
10. The Eagles won 80% of the games they played last season. If they won 12 games, how many did they play?
11. One angle is three times larger than another angle. Together the angles sum to 90°. What is the measure of each angle?
12. A candy shop sells three types of ice cream: chocolate, vanilla, and strawberry. The ratio of chocolate to vanilla to strawberry cones sold in a week is $3: 2: 1$. If the store sells 150 cones in a week, how many of each kind do they sell?
13. Lily makes $\$ 13$ an hour babysitting. One month, she made $\$ 201.50$ babysitting. How many hours did she babysit for?
14. Rachel needs $\frac{2}{5}$ yard of ribbon to make one bow for a cheerleading competition. If she has 15 yards of ribbon, how many bows can she make?
15. Miguel has $\$ 20$ to spend at the candy store. Gummy bears cost $\$ 2.50$ per pound and peppermint patties cost $\$ 4$ a pound. If Miguel buys two pounds of gummy bears, how many pounds of peppermint patties can he buy?
16. A theater has 40 seats in a row. An elementary school is taking 500 students to the theater to see a production. How many rows of seats will the theater need to reserve for them?
17. The perimeter of the rectangle shown below is 54 square feet.

a. Find the value of x.
b. Find the dimensions of the rectangle.
18. Christina can bike 10 miles per hour. How long will it take her to bike 18 miles?

6.3g Class Activity: Solving Percent Problems with Equations

In Chapter 2, you solved the following types of problems using a variety of strategies. In this lesson, we will solve different types of percent problems using equations.

Activity 1: Write and solve an equation for each problem. Verify your answer using estimation and mental math strategies. $\mathbf{n \#}$ \#
a. What number is 80% of 40
b. 40 is 80% of what number?
c. 40 is what percent of 80 ?

Directions: Solve the following problems by setting up and solving an equation.

1. What number is 25% of $40 ?$	2. What number is 40% of $60 ?$
3. 48 is 60% of what number?	4.36 is 75% of what number?

5. 14 is what percent of $35 ?$	6. What number is 10% of $120 ?$
7. 25% of a number is 4. What is the number?	8. 25% of 24 is what number?
9. 7 is what percent of $20 ?$	
12.24 is 12% of what number?	10.30 is 120% of what number?

15. 25 is what percent of 40 ?	16. What number is 35% of 48 ?
17. 2.8 is what percent of 7 ?	18. What number is 200% of 75 ?
19. 10% of a number is 4.2 . What is the number?	20.52% of 180 is what number?
21. What number is 6.25% of 60 ?	22. 120% of a number is 48 . What is the number?
23. 12.5% of 72 is what number?	24. 4.5 is 15% of what number?

Spiral Review

1. Compare using $<,>$, or $=$.

a. $3 __5$	b. $10 ___4$	c. $-15 __-3$

2. Compare using $<,>$, or $=$.

a. $5 __3$	b. $4 ___10$	c. $-3 __-15$

3. Compare problems \#1 and \#2. What is the same? What is different?
4. Give two different values for x that make the following inequality true. $x+4<10$

6.3g Homework: Solving Percent Problems with Equations

1. What number is 75% of $16 ?$	2. 8 is what percent of $32 ?$
3. 15 is 60% of what number?	4. What number is 18% of $50 ?$
5. What number is 20% of $54 ?$	6. 16 is 32% of what number?
7. 6 is what percent of $20 ?$	8.15 is 50% of what number?
9. 4 is what percent of $20 ?$	

15. 30 is what percent of 80 ?	16. What number is 250% of 50 ?
17. 2.8 is what percent of 20 ?	18. What number is 175% of 120 ?
19. 49 is what percent of 56 ?	20. What number is 150% of 32 ?
21. What number is 80% of 90 ?	22. 4.8 is 10% of what number?
23.15 is 75% of what number?	24. 2.5 is what percent of 20 ?
25. What number is 90% of 48 ?	26. What number is 4.25% of 50 ?
27. 80 is what percent of 50 ?	28. What number is 0.5% of 40 ?
29. 3.6 is what percent of 18 ?	30. 87.6 is 30% of what number?

6.3h Class Activity: Understanding the Solution to an Inequality

Activity 1: Talen's mom told him he could spend no more than $\$ 10$ at the arcade.
a. Give some values for the amount Talen can spend at the arcade.
b. What is the maximum amount Talen can spend at the arcade? What is the minimum amount Talen can spend at the arcade?
c. Describe in words the range of dollar amounts Talen can spend.
d. Write an inequality to represent the amount a (in dollars) Talen can spend at the arcade.
n\#
e. Create a number line diagram to represent the amount Talen can spend at the arcade.
f. Talen spent $\$ 8$ at the arcade. Did he follow his mom's instructions?

Activity 2: You must be at least 54 inches tall to drive the cars on the fastest race car track at an amsement park.
a. Give some values for the height you can be and drive the cars.
b. Give some values for the heights you cannot drive the cars.
c. Write an inequality to represent the height you need to be to drive the cars.
d. Create a number line diagram to represent the heights of the children who can play drive the cars.

Activity 3: You must be less than 48 inches tall to play in Kiddie Zone at an amusement park.
a. Give some values for the height you can be and enter the Kiddie Zone.
b. Give some values for the heights that you cannot play in the Kiddie Zone.
c. Write an inequality to represent the height of kids who can play in the Kiddie Zone.
d. Stephan is 48 inches tall. Can he play in the Kiddie Zone?
e. Create a number line diagram to represent the heights of the children who can play in the Kiddie Zone.

Activity 4: Create a number line diagram to represent each inequality. Then, circle the numbers that are solutions to the inequality.

1101014
a. $x>2$

Which of the following are solutions to the inequality?
2
1.98
2.01
-2
10
b. $x \geq 2$

Which of the following are solutions to the inequality?
2
1.98
2.01
-2
10
c. $x \leq 10$

Which of the following are solutions to the inequality?
10
10.01
9
0
-4
d. $x>0$

Which of the following are solutions to the inequality?
$\frac{1}{100}$
-0.1
0
50
-1
e. $x \geq 2 \frac{1}{2}$

Which of the following are solutions to the inequality?
$2 \frac{4}{5}$
2
2.5
2.05
2.49
f. $4<x$

Which of the following are solutions to the inequality?
3
4
4.1
10
0
g. $0 \geq x$

Which of the following are solutions to the inequality?
0
-1

1
$\frac{1}{2}$
-0.75
h. $h>-3$

Which of the following are solutions to the inequality? 0
-4
-2
-3.1
2
i. $\quad-3 \frac{1}{4} \geq n$

Which of the following are solutions to the inequality?
-3
-3.5
-3.3
-2
$-3 \frac{1}{5}$

Activity 5: Write an inequality to match each number line diagram.

a.	
b.	
c.	
d.	

Spiral Review

1. Solve the equation for x.
$6 x=42$.
2. Solve the following equation for x.
$\frac{x}{8}=72$
3. Give two different values for x that make the inequality true.
$x \geq 7$
4. Bodie saves 30% of what he earns. If he saved $\$ 54$, how much did he earn?

6.3h Homework: Understanding the Solution to an Inequality

Directions: For each problem:

1) Write an inequality to represent the situation.
2) Create a number line diagram to represent the situation.
3) Give two values that make the inequality true. Make sure your values make sense in the problem. For example, it does not make sense to have $6 \frac{1}{2}$ people.
1. A minimum of three people need to show up for a workout class for the instructor to hold the class.
2. A maximum of 45 people can be in the school library at one time.
3. Water freezes at zero degrees Celsius or colder.
4. Shannon needs at least an 85% on her math test to get an A in math for the quarter.

Directions: Match each inequality to the corresponding number line diagram.
5. $x<5$

6. $x \leq 5$

7. $5<x$

8. $x \geq 5$

9. $-5<x$

Directions: Create a number line diagram to represent each inequality. Then, circle the numbers that are solutions to the inequality.
10. $x<7$

7
0

$$
6 \frac{3}{4}
$$

10
11. $x \leq 7$

7
0

$$
6 \frac{3}{4}
$$

10
-7
12. $7 \leq x$

7
0

$$
6 \frac{3}{4}
$$

10
13. $-6>v$

Which of the following are solutions to the inequality?
-7
-5.5
-6
0
-6.1

Directions: Write an inequality to match each number line diagram.

6.3i Class Activity: Solving Inequalities

Activity 1:

a. Solve the equation $x-2=6$. Represent the solution on a number line diagram.
b. Solve the inequality $x-2>6$. Represent the solution on a number line diagram.
c. Solve the inequality $5 x=30$. Represent the solution on a number line diagram.
d. Solve the inequality $5 x \leq 30$. Represent the solution on a number line diagram.
e. How is solving an inequality like solving an equation? How is it different?

Activity 2: Solve each inequality. Represent the solution on a number line diagram. Check your solution by testing a point in the shaded region of the number line diagram.

a. $x+7 \geq 12$	b. $n-4<7$

c. $7 x \geq 56$	d. $\frac{y}{3}>12$	
e. $9 x \leq 54$	f. $0.1 x \leq 8$	
g. $x-2.5>9.1$		
i. $\frac{c}{2} \geq 7.5$	h. $9 x<15$	
q. $x-0.35<14$		
m. $18<3 x$		

Spiral Review

1. Write and solve an inequality for the phrase "the sum of a number and five is greater than 12 ". Represent the solution on a number line diagram.
2. Write and solve an inequality for the phrase "the quotient of a number and seven is less than or equal to twelve". Represent the solution on a number line diagram.
3. Convert $5 \frac{1}{4}$ hours to minutes.
4. Convert 3.5 feet to inches.

6.3i Homework: Solving Inequalities

Directions: Determine whether the number given is a solution to the inequality. Write yes if the number is a solution or no if the number is not a solution.

1. $x-7>8 ; x=15$	$2.3 x \leq 15 ; x=5$
3. $\frac{3}{8} x \geq 1 ; x=4$	4. $15<x+10 ; x=4$

Directions: Solve each inequality. Represent the solution on a number line diagram.

5. $y-5 \leq 12$	$6 . b+3<9$	$7.9 x \geq 54$
8. $\frac{y}{7}<6$	$9.10 x \leq 120$	$10.0 .5 x>4$
$11 . x+4>5.2$	$12.8 x \geq 2$	$13.9<\frac{d}{3}$
$14.12>x+11$	$15 . \frac{4}{5} x \leq 36$	$16.1 \frac{1}{2} y>9$
$17 . x-57 \leq 429$	$18.8+n<11$	$19 . r-3 \frac{1}{2}>8.25$

Activity 1: Eva is buying scarves as Christmas presents for her sisters and nieces. Each scarf costs $\$ 15$. If she spends at least $\$ 60$, she will get a 25% discount on her purchase.
a. Write and solve an inequality to show the number of scarves Eva must purchase to get the 25% discount.
b. If Eva buys 4 scarves, will she get the discount? Explain.
c. Give some other values for the number of scarves Eva can buy and receive the discount.

Directions: For each problem, write and solve an inequality to represent the situation. Then, graph the inequality.

1. The area of a rectangular garden must be at least 120 square feet for Petunia to plant what she wants to plant.
a. If the width of the garden is set at 15 feet, write and solve an inequality to represent the possible lengths for the garden.
b. If Petunia makes the garden 8 feet long, is she meeting the conditions for the area of the garden?
2. Mr. Green is ordering pizzas for the middle school dance. Medium pizzas cost $\$ 8$. He can spend no more than $\$ 60$ on pizzas.
a. Write and solve an inequality to represent the number of pizzas Mr. Green can buy.
b. Give some possible values for the number of pizzas Mr. Green can buy.
3. You must be at least 46 inches tall to ride the roller coasters at an amusement park. Owen is currently $43 \frac{1}{2}$ inches tall. Write and solve an inequality to show the amount Owen must grow to be tall enough to ride the roller coasters at the amusement park.
4. Dane makes $\$ 12$ an hour babysitting his sister. He is trying to save over $\$ 450$ before the end of the summer. Write an inequality to represent the number of hours he needs to babysit to meet his goal.
5. After spending $\$ 5.75$ on lunch, Dan has less than $\$ 3$ left. Write an inequality to represent the amount Dan had before he bought lunch.
6. Devon can spend no more than $\$ 200$ on back-to-school clothes. He has already purchased 3 pairs of pants for $\$ 19.99$ each and 4 shirts for $\$ 15.99$ each. Write an inequality to represent the amount of money Devon has left to spend.
7. Kylie's teacher has asked her to read at least 15 minutes each night. Write an inequality to represent the number of minutes Kylie reads in one week if she is reading the amount she is supposed to.
8. Kelly and two of her friends are washing cars. Their goal is to make at least $\$ 40$ each. How much money do they need to make together washing cars to meet their goal?
9. Clarissa saves 25% of what she earns. Write an inequality to represent the amount Clarissa must earn to have at least $\$ 500$ in savings.
10. Desiree is making a flag in the shape of a triangle for a parade float. To fit on the float, the area of the flag can be no more than 600 square inches. She has decided to make the height of the flag equal to $3 \frac{1}{2}$ feet. Write an inequality to represent possible lengths for the base of the flag.
11. The sum of a number and fifteen is less than or equal to sixty-four.
12. The difference of a number and twelve is greater than 30 .
13. The quotient of a number and 1.2 is at least 30 .

Spiral Review

1. Simplify.

a. $3 x+2 x+x$	b. $3(x+2)+5 x$
c. $8 x-5 x+2 x$	d. $5+4(3 x-1)-x$

2. Evaluate when $x=3$.

a. $4 x^{2}$	b. $(4 x)^{2}$
c. $6 x+3(x-2)+x^{3}$	d. $\frac{2 x}{x+7}$

3. Solve for x.

a. $4 x=26$	b. $\frac{x}{4}=26$
c. $x-347=800$	d. $x+4.5=9 \frac{3}{4}$

4. Solve for x. Draw a number line diagram to represent the solution.

a. $4 x>26$	b. $\frac{x}{4} \leq 26$
c. $x-347 \geq 800$	d. $x+4.5<9 \frac{3}{4}$

6.3j Homework: Writing and Solving Inequalitites to Represent Real World Problems

1. Iya sells friendship bracelets for $\$ 4$. Write and solve an inequality to represent the number of bracelets Iya needs to sell to make at least $\$ 150$?
2. A suitcase can weigh no more than 50 pounds to be checked on an airplane. Landon's suitcase currently weighs 37 pounds. Write and solve an inequality to represent the amount of weight Landon can add to his suitcase and still be able to check his suitcase.
3. You want to spend less than $\$ 20$ on a birthday present for your friend. You have already bought a board game that costs $\$ 12.99$. Write and solve an inequality to show the amount you have left to spend on your friend.
4. Owen can play no more than 1.5 hours of iPad a day. If he has already been playing iPad for 50 minutes today, write and solve an inequality to represent the number of minutes he can still play iPad.
5. You have at most $\$ 250$ in your budget to decorate the faculty lounge. If you will be decorating the teacher lounge 8 times during the school year, about how much should you spend each time you decorate the lounge? Write and solve an inequality to represent this problem.
6. A librarian is packing books into boxes. She has 5 boxes and each box can hold no more than 30 books. Write and solve an inequality to represent the number of books she can pack into boxes.

6.3k Class Activity: Self-Assessment: Section 6.3

Consider the following skills/concepts. Rate your comfort level with each skill/concept by checking the box that best describes your progress in mastering each skill/concept. Corresponding sample problems, referenced in brackets, can be found on the following page.

Skill/Concept	Minimal Understanding 1	Partial Understanding 2	Sufficient Mastery 3	Substantial Mastery 4
1. Understand what the solution to an equation is.				
2. Use substitution to determine whether a given number is a solution to an equation.				
3. Solve one-step equations, including equations with rational numbers.				
4. Write and solve equations to represent real-world problems.				
5. Understand that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions and represent the solutions using a number line diagram.				
6. Solve one-step inequalities, including inequalities with rational numbers.				
7. Write and solve inequalities to represent real-world problems in which constraints are given. Interpret the solution set in the context of the problem.				

Sample Problems for Section 6.1

Square brackets indicate which skill/concept the problem (or parts of the problem) align to.

1. Consider the following equations: [1]
$3 x=18$
$x+5=12$

When you are asked to solve these equations, what are you being asked to do?
2. Determine whether the number given is a solution to the equation. Write yes or no. [2]

a. $7 x=14 ; x=2$	b. $x+9=14 ; x=23$
c. $x-7.01=11.99 ; x=19$	d. $\frac{4}{3} x=32 ; x=18$

3. Solve. [3]

a. $x+4=20$	b. $y-7=4$	c. $3 x=24$
d. $\frac{x}{5}=1$	e. $\frac{x}{8}=9$	f. $35=\frac{y}{5}$
g. $45=x+30$	h. $8=x-9$	i. $x-8.9=7$
j. $2.5 x=100$	k. $x+7 \frac{5}{8}=18.5$	$1 . \frac{t}{0.2}=25$
m. $7,340+x=10,397$	n. $310.8=37 x$	o. $6 \frac{2}{5}=g-3.125$

Directions: For \#4-13, write an equation to solve each problem. Then, solve the problem. [4]
4. Ramon is collecting donations for a charity. He is hoping to raise $\$ 250$. If he has already collect $\$ 187$ in donations, how much more does he need to collect
5. Gavin is out shopping. After he buys 2 pairs of pants for $\$ 27$ each, he has $\$ 60$. How much money did he have before he bought the 2 pairs of pants?
6. Augusto tips 20% on his meals. If he tipped $\$ 4.80$ on a meal, how much was the meal?
7. Four families are renting a house together on vacation. If each family pays $\$ 75$ per night to rent the house, what is the total cost of the house each night?
8. Sandy puts 6% of her income in a retirement account. If she made $\$ 1,500$ in a pay period, how much of it will go into her retirement account?
9. The height of a parallelogram is 28.8 inches. If the area of the parallelogram is 155.52 inches 2, what is the length of the base of the parallelogram?
10. One angle is five times larger than another angle. Together the angles sum to 180°. What is the measure of each angle?
11. The ratio of $6^{\text {th }}$ graders to $7^{\text {th }}$ graders to $8^{\text {th }}$ graders at a middle school is $3: 1: 1$. If there are 180 students at the middle school, how many of the students are in each grade?
12. A lunch table can hold 8 students. If there are 120 students who need to eat lunch at the same time, how many tables are needed?
13. A trapezoid has an area of 64 square centimeters. If the bases measure 4 cm and 12 cm , what is the height of the trapezoid?
14. Describe the similarities and differences between an equation and an inequality. Use examples to support your ideas. [5]
15. Circle the numbers that are solution(s) to the inequality? Then, give two more values that are also solutions to the inequality. [5]
$x \leq 3$
3
3.01
2.99
0
-3
16. Circle the numbers that are solution(s) to the inequality? Then, give two more values that are also solutions to the inequality. [5]
$3<x$
2.99

0
-3

Directions: For \#17-37 (all), solve each inequality. Represent the solution on a double number line. Then, write $t w o$ solutions of the inequality. [5][6]

17. $x-2>7$	$18 . t+3 \geq 9$	$19.32 \geq 8 x$
20. $\frac{y}{11}<66$	$21.42 \leq x-36$	$22 . \frac{2}{9} x<36$
$23 . x+4>5.2$	$24.8 x \geq 2$	$25.9<\frac{d}{3}$
$26.12>x+11$	$27 . \frac{4}{5} x \leq 36$	$28.1 \frac{1}{2} y>9$
$29 . x-57 \leq 429$	$30.8+n<11$	$31 . r-3 \frac{1}{2}>8.25$
$32 . \frac{7}{8} t \geq 56$	$33.2 \geq 0.4 b$	$34 . \frac{x}{0.5} \leq 18$
$35.5 x<21$		

Directions: For \#38-46 (all), write an inequality to represent each situation. Then, create a number line diagram to represent the solution set. Give at least one reasonable solution to the problem. [5][6][7]
38. The minimum grade point average required to play basketball is 2.3 .
39. It is recommended that teenagers get at least 9 hours of sleep a night.
40. You must be at least 18 years old to vote
41. To qualify for a specific marathon, a runner's time had to be under 190 minutes.
42. Sally spent $\$ 60$ on ingredients for a bake sale. She has sold $\$ 35$ in baked goods. Write an inequality to represent the amount she still needs to sell to make a profit.
43. A bus can hold at most 40 people. If there are already 24 people on the bus, write an inequality to represent the number of people that can get on the bus at the next stop assuming no one gets off the bus.
44. An elevator has a 2,500-pound capacity. Write an inequality to represent the number of 75 -pound boxes the elevator can hold.
45. Noah is at a video arcade earning tickets to buy prizes. He knows he wants a candy that costs 50 tickets. After he gets the candy, he hopes to have at least 525 tickets left. Write an inequality to represent the number of tickets he will need to win.
46. Write an inequality to represent the number of nickels Stephanie needs to have in order to have at least \$3.50.

