
Chapter 5
Geometric Figures and Scale Drawings

Here we connect concepts developed about ratio and proportion in the previous chapters to concepts in geometry.
In the first section we start by exploring conditions necessary, in both angle measure and side length, to construct
unique triangles with ruler and protractor. The concept of ‘uniqueness’ is discussed as an introduction to the idea
of equivalence under a rigid motion. Students will distinguish with more precision than in previous years that two
figures can be exactly the same size and shape, or can be the same shape, but di↵erent size, or can be of di↵erent
shape. The focus of the second section is on figures that are the same shape but di↵erent size. Students construct
scaled drawings of polygons first, and then other figures. Through explorations we discover that polygons that
are the “same shape but di↵erent size” (more precisely, are scaled images of each other) have angle measures that
are the same and side lengths that are proportional. Essential here is the notion of scale. Students will connect
the concept of scale to ideas associated with ratio and proportion in order to reproduce images. We note that side
lengths change by the same factor but area changes by the square of that factor. In the third section, we turn to
circles and observe that all circles are scaled drawings of each other; from which it follows that for any circle,
the circumference (length of the perimeter) is proportional to the length of the radius, and the area is proportional
to the square of the radius. Students will discover the remarkable fact that the constants of proportionality are
related. In fact, we have A = ⇡r2 and C = 2⇡r, where ⇡ is both the circumference of a circle of diameter 1 unit and
the area (in square units) of a circle of radius 1 unit. The chapter ends with students examining angle relations as
a means to solve problems, a theme to be further explored in the next chapter.

Students will also observe that there are many triangles with given angle measures at the vertices, and that they are
all scale drawings of one another. This is a significant characteristic of similarity that is further explored in grades
8 and 10; in grade 7 we simply observe that it is true for the triangles that we construct with ruler and protractor.
In section 4, we gather together, through exploration, other statements that appear to be true: for example that the
sum of the angles of a triangle is a straight angle, and use that fact to solve problems involving angles.

Looking ahead, in Grade 8, using the concept of “dilation” along with the rigid motions. In grade 7 we use
terms such as “same shape” and “same size.” Additionally, Grade 8 students will extend their understanding of
circles to surface area and volumes of 3-D figures with circular faces. Grade 9 students will formalize the triangle
congruence theorems (SSS, SAS, AAS, ASA) and use them to prove facts about other polygons. Also, Grade 8
students will extend the idea of scaling to that of dilation of right triangles and then to the slopes of lines. Grade 10
students will formalize dilation with a given scale factor from a given point as a non-rigid transformation (this will
be when the term “similarity” will be defined) and will solve problems with similar figures. The understanding of
how the parts of triangles come together to form its shape will be deepened in Grade 8 when students learn the
Pythagorean Theorem, through to Grade 11 and trigonometry (numerical geometry of the right triangle) and its
generalization to all triangles through when they learn the Law of Sines and Law of Cosines.

Geometry is the study of shapes and forms with attention to defining properties and relationships among them.
In the elementary grades, student have learned much about these forms and their properties, in terms of lengths,
angles and area. In this chapter, and again in the geometry chapters of 8th grade, we undertake a review of this
knowledge, and start to give it some logical structure that finally will be fully studied in secondary mathematics.
Here we will rely on constructions and diagrams to illustrate and explore concepts. While emphasizing that all
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geometric knowledge comes out of understanding these constructions, we must caution that a good picture is just
an example, and each picture will have features that are not characteristic of the situation prescribed by the context.
Nonetheless, working with diagrams is an essential component of geometric thinking.

Geometry of the plane was well understood in antiquity. When Alexander the Great, toward the end of the 4th
century BCE, founded the library at Alexandria the Greek philosophers and mathematicians moved there to set
up their schools. They set as a primary goal the creation of an exposition of plane geometry in the strict logical
style advocated by Aristotle. This was the “Elements” of Euclid, which remained the standard exposition up to
today. At the beginning of the 20th century CE, David Hilbert wrote what was to become the definitive Euclidean
geometry in this logical format. Around the same time, the mathematician Felix Klein suggested a new way of
looking at geometry – as the study of properties of objects in a set that are unchanged by a particular collection
of transformations of the set. For example, the length of a line segment remains the same, no matter where we
put it on the plane. According to Klein, the basis of study of planar geometry lies not the axioms and theorems,
but in the rigid motions: rotations, shifts and reflections. Two objects are considered congruent, of the same
shape and dimension, if there is a rigid motion taking one onto the other. Similarly, the fundamental objects
in spherical geometry are the rotations of the sphere, and so forth. This perception of geometry is most useful
in its applications, and, in particular, provides the mathematics for online applications for geometry (Geogebra,
Geometer’s Sketchpad, etc.). For that reason, as well as the closer correlation to intuition than the the axiomatic
approach, transformational geometry has been adopted by the Common Core, and the Utah Core Standards for the
exposition of geometry starting in seventh grade and going through secondary mathematics.

Section 5.1: Constructing Triangles from Given Conditions

In this section students discover the conditions that must be met to construct a triangle, first using only straightedge
and compass, and then introducing measure through ruler and protractor. It is important to keep in mind the
di↵erence between the “thing” and the “measure of the thing.” A line segment has a certain measure, its length,
and an angle has its measure (degrees, and much later, radians). This numerical quantification of geometric
concepts is relatively new in human history, relative to the understanding of the basic facts relating lines and
angles. For a carpenter, a plank is of a certain length, width and thickness, but also of a certain cost and a certain
material. These measures of a plank are its characteristics, and distinct from the object. If the carpenter says that
“here we will use 137 linear feet of plank,” that gives us some information, but not the information about material,
the strength of the material, and its cost. Making this point here helps immeasurably later.

By constructing triangles students will note that the sum of the two shorter lengths of a triangle must always be
greater than the longest side of the triangle and that the sum of the angles of a triangle is always a straight angle(
180�. They then explore the conditions for creating a unique triangle: three side lengths, two sides lengths and the
included angle, and two angles and a side length, whether or not the side is included. This approach of explore-
hypothesize-substantiate, and then seek the logical structure of those conclusions is integral to the new core. It
is also the way science is done. In grades 9 and 10, on the basis of this exploration in middle school, students
turn to the logical structure of geometry. Throughout this chapter, students and teachers use geometric terms with
which they have become familiar: point, line, line segment, circle, etc. Though in 7th grade these terms will not
be rigorously defined, it is important that they are used correctly and misconceptions are not developed, thus we
take time here to provide a frame for using terms.

The most fundamental objects in the geometry of the plane are points, lines and circles. It is important to dis-
tinguish between the physical drawing of a point and the mathematical conception of a point. in that geometric
points are ideal and have no size while the drawings we make do. In the same way, a drawn line segment will have
thickness, but the ideal concept does not.

A line segment is determined by two points, called its endpoints. The line segment between two points is drawn
with a straight edge aligned against the two points, and its length is measured by a ruler.

A circle s defined as all points of equal distance from a center point. A circle is drawn with a compass: the
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needlepoint is situated at the center of the circle, and the pencil point traces out a curve as it is rotated around
the fixed center. When we speak of “the area of a circle,” we are referring to the area of the region enclosed by
the circle. Any line segment from the center to a point on the circle is a radius; all radii have the same measure,
denoted by r. The curve that bounds the circle is called its circumference.

Once unit lengths have been chosen, distance on the plane is measured using a ruler whose markings are based
on the chosen unit. Thus, we might have a yard ruler or a meter stick or an electron microscope; in any case it is
important to understand that it is the distance between two points (or the length of the line segment) that is being
measured, and (as pointed out in chapter 4), any two ways of measuring distance are proportional. When it comes
to curved lines, like circles, there is no easy, ruler-like way to measure their length. We will discuss this further
for the circle in the third section.

A ray is a piece of a line that extends from one point (called the vertex) on and on in only one direction. We name
rays by listing the initial point or vertex first, so ray AB has vertex A and extends on in one direction through the
point B.

Angles

An angle consists of two rays which share the same vertex. The rays are called the sides of the angle. The angle
with rays AB and AC is shown in Figure 1. We refer to this angle using the symbol \, as \CAB. Note that when
we name an angle, the vertex is listed in the middle, and the other outside letters designate points on the defining
rays. The symbols \CAB and \BAC denote the same angle; in other words, we do not distinguish the way the
angle is traversed (clockwise or counterclockwise). The distinction will become important in 8th grade when we
discuss orientation,

A

B

C

Figure 1

We measure angles in degrees using a protractor. A full circle rotation around a point is assigned the measure of
360�. The reason for this is historical and dates back to the times of the ancient Babylonians, who counted in a
sexigesimal (base 60) system, for the simple reason that 60 has so many factors.

If the rays of an angle lie on the same line, but point in opposite directions, the angle is half the full rotation, and
so has 180� and is called a straight angle. If one ray of the angle bisects the straight angle formed at the vertex by
the line containing the other ray, the angle has a measure of 90� and is called a right angle. Note that in this case,
all the angles at the vertex are right angles.

We classify angles in reference to these designations. An acute angle measures less than 90�. An obtuse angle
measures greater than 90� and less than 180�.

It is important that students acquire facility in using tools and technology in mathematics, especially for the ability
to draw geometric figures, to illustrate concepts and to solve problems. The classical tools of plane geometry
are the straightedge and compass; the tools for measurement are ruler (distances) and protractor (angles). It is
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Figure 2: (a) an acute angle, (b) an obtuse angle

(The example angles shown here were constructed and measured using Geogebra.)

important to learn how to use these tools, even though these tasks are greatly simplified through modern technol-
ogy. For that reason it is important to become acquainted to the many online programs for drawing and analyzing
geometric constructions; to name a few: Excel, Geogebra, Geometer’s Sketchpad, Maple and Mathematica. Excel
is noteworthy in the sense that the software is at a basic level, and so a lot of the work of creation of a good
image is left to the student. Geogebra and Geometer’s Sketchpad are very sophisticated instruments, allowing
for dynamic manipulation of drawings; as such they can provide real insight into the concepts and procedures of
geometry. Maple and Mathematica are research-level tools, incorporating all kinds of graphing capability, but also
great facility in numeric and symbolic computation. In an appendix, we have provided a basic introduction to the
use of hand-held tools as well as Geogebra.

(a) Equilateral (b) Isosceles (c) Scalene

(d) Acute (e) Obtuse (f) Right

Figure 3: Triangles

Triangles

A triangle is a region in the plane enclosed by three line segments. Figure 3 (on the preceding page) illustrates
several types of triangles. When two or more sides have hash marks, those line segments with the same number
of hash marks are of equal length.
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Triangle (a) is equilateral, (b) is isosceles, (c) is neither (scalene), (d) is acute (all angles are acute), (e) is obtuse
(one angle is obtuse), and (f) is a right triangle (the angle marked is the right angle).

Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus
on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique
triangle, more than one triangle, or no triangle.7.G.2.

Let us pause to introduce (or remember) certain vocabulary which will make it easier to talk about triangles. A
vertex of a triangle is a point where two sides meet. A triangle has three vertices and three sides. Typically, the
vertices of a triangle are labeled with capital letters, such as A, B,C, and the opposite side by the corresponding
lower case letter (a, b, c). Given two vertices, the included side is the side joining the two vertices, which is also the
side opposite the third vertex. Given a side, the adjacent vertices are the vertices at the ends of the side. Finally,
we use the symbol � to designate a triangle; so �ABC means the triangle with vertices A, B,C.

The question that students will now explore is this: given three positive numbers, a, b, c, is there a triangle with
sides of these lengths? First lets look at the case where the lengths are the same.

Example 1.

Given a length a, how many triangles are there with all sides of length a?

An important question here is: what do we mean by “how many?” For example, triangle (a) above is
a triangle all of whose sides are of the same length. If we move triangle (a) horizontally, do we get a
di↵erent triangle? If we move triangle (a) vertically, or in any direction, should we call that a di↵erent
triangle? We’d rather not: we want to say that these are the same triangles, only in di↵erent positions.
Similarly, if we rotate the triangle around some point, once again we get the same triangle, but in a
di↵erent position. So, let’s rephrase our question:

Let a be a positive number. On a piece of graph paper, let A be the point on the horizontal axis of
distance a from the origin O. How many triangles are there with one side OA, and all sides of the same
length?

Solution. Draw, with a compass, or with appropriate technology, the circles of radius a centered at
O and A. These circles will intersect at two points; one above the horizontal axis, and one below. Call
these points B+ and B�. These are the only possibilities for the third vertex of the triangle (see Figure
4).

O A

B+

B�

a

Figure 4

Are these triangles “di↵erent?” Not really, because one is the reflection of the other in the horizontal axis . So, we
can conclude:
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Given a length a > 0, we can construct a triangle of side length a with one side on the horizontal
axis with the origin as one endpoint, so that every triangle of all side lengths equal to a can be
moved by rotations and slides to this one, or its reflection in the horizontal axis.

We now turn to consider general triangles, exploring what conditions su�ce to construct a triangle, and in what
sense it is unique (the only solution possible, ignoring its position on the plane). First, we ask if there are conditions
on a set of three positive numbers for them to be the lengths of the sides of a triangle. Try the lengths 3, 6, and 10
units, and then lengths 3, 9, 10 units. We see inFigure 5, that we cannot find a triangle with sides given by the first
set of numbers, but we can for the second.

10

6 3

10

9 3

Figure 5

Example 2.

What are the possible values for the third side of a triangle if the other two sides are 2 and 12?

A B

C

D E

Figure 6: Building a triangle with side lengths 12 and 2.

In Figure 6, AB is the side of length 12, and BC the side of length 2. Imagine swinging the segment BC
around point B, then point C will always be somewhere on the circle shown. No matter what angle we
choose between the two segments, the third side of the triangle must connect point C to point A. For all
points C on the circle (except D and E) there is a triangle with side lengts 2 and 12. The triangle (except
for the possibility of flipping in the line ADBE) is unique. Now, the shortest line segment between A
and a point on this circle is AD of length 10 units, and the longest such line segment is AE of length 14
units. Since the third vertex of our triangle cannot be either D or E (for in those cases all sides of the
triangle lie on the same line), we can conclude that the third length must be strictly between 10 = 12� 2
and 14 = 12 + 2.

There was nothing special about the numbers 12 and 2 in this argument, we can replace them with any two positive
numbers a and b with a � b, and assert if c is the length of the third side of a triangle with sides of length a and b,
we must have c > a � b and c < a + b. The general statement is: the longest side length of a triangle is less than
the sum of the lengths of the other two sides. The best way to state this is:
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Triangle Inequality. For any triangle, the sum of the lengths of two sides is greater than the length
of the third.

Extension. Explain why the triangle inequality is true. Show that this extends to arbitrary polygonal paths: the
total length of a path (the sume of the lengths of the line segments that form it) is no less than the length of the
straight line between its endpoints. Consequently the length of any polygon side is always less than the sum of the
other polygon side lengths. End Extension.

Now, through exploration, students will make this important observation:

If a, b, c are three positive numbers satisfying the triangle inequality, then there is a unique triangle
(up to motions in the plane) with those numbers as side lengths.

To see this, pick three numbers a, b, c that satisfy the triangle inequality. On a coordinate plane, label the origin
as A and label a point B on the positive horizontal axis so that the line segment AB has length a (Consult the
above figure, but with 12 replaced by a and 2 replaced by b) . Now, draw a circle with center at B and of radius
b. Because of the triangle inequality, c is between a � b and a + b, so there is a point C on the circle above the
horizontal axis that is of distance c from A. These three points are the vertices of a triangle of side lengths a, b, c.
Now, suppose that we have another triangle with these side lengths. We can move (by a slide and rotation) that
triangle so that the side of length a coincides with the segment AB. Then the side of length b has an endpoint at A
or B. If it is at A, reflect the triangle in the horizontal line through the midpoint of AB. Now, the side of length b
has B as an endpoint, and the side of length c has one endpoint at A and the other on the circle of radius b centered
at B. But there is only one point on that circle whose distance from A is c, so the moved triangle coincides with
the triangle we constructed.

Oops, not exactly - there is a point C0 on the circle lying below the axis of distance c from A, that forms the triangle
�ABC0. But, this is the reflection of �ABC in the horizontal axis, so is still the same triangle as constructed.

Here is another set of conditions for which there is a unique triangle satisfying the conditions:

Given an angle \ABC, and positive numbers a and c, then there is a unique triangle �ABC with
the given angle , and the sides adjacent to that angle of lengths a and c.

Measure o↵ a distance a on the ray BA from the point B, and measure o↵ a distance c on the ray BC from the
point B. Draw the line segment joining the endpoints of those segments to get the desired triangle (see Figure 7).
This is the unique triangle satisfying the given conditions, because if we have another such triangle we can move
the angle to the angle ABC, and the side of length a is either on the ray BA or the ray BC. If it is on the first ray
the two triangles coincide. But what if the side of length a is on BC, do we get a “di↵erent” triangle?

If we are given two side lengths and an an angle, in order that they describe a unique triangle it is important that
the lengths be of the adjacent sides, as we see in Figure 8: there is one acute triangle and one obtuse triangle with
given angle and side lengths.
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Figure 8

Example 3.

Given two angles, and a positive number a, if there is a triangle with a side of length a whose adjacent
angles are the given angles, then it is unique.

Solution. Draw a line segment AB of length a, and copy the angles (as shown in Figure 9) at the
endpoints of AB.

A

A B

a B

A B
a

C

Figure 9

If the rays of the angles, other than the ray containing AB intersect, call the intersection point C, then
ABC is a triangle.

This explanation is too easy, with some gaps in the logic. This might be a good time to explore the gaps in a
preliminary way. First of all, Figure 9 is not the only possibility: if the two given angles are obtuse, then there will
be a point of intersection on the side of AB opposite the one depicted. In this case, the given angles are exterior
angles of the triangle. A student may observe that if the given angles are right angles, there will be no point of
intersection C. This generalizes to: if the rays in question are parallel, there is no point of intersection and thus no
triangle. It may come up that this statement is the same as saying that the sum of the whose measures of the given
angles is 180�. The final realization that might happen is that the condition for there to be a point of intersection
is that the sum of those measures is less than 180�, In any case, these two examples should help the students
understand that if the measure of two angles of a triangle is known, then so is the third.
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Students will observe that the the condition on the measures of the angles leads to an intersection point of the two
outside rays of the angles. Denoting that point as C, the triangle �ABC is the desired triangle.

At this point, the student may wonder: why did this turn out this way? That is a question that will be answered
in secondary mathematics; for the time being, what is important is that students explore these ideas through
constructions of their own. A partial answer to that question will come later in grade 7: that the sum of the
measures of the angles of a triangle is 180�, so the sum of the measures of two angles has to be less than 180�. In
fact, students will see that it follows from this fact, that if we know the length of one side and the measures of any
two angles, then the triangle with these dimensions is unique.

The following animations at the website Mathsonline show how to construct triangles when certain measures are
given. Before looking at the links, try the following using a ruler and compass. You may use a ruler, a protractor,
and a compass.

• Construct a triangle with sides of length 10 cm, 12 cm, and 18 cm.

Side-side-side animation here:
http://www.mathsonline.org/pages/animationPage.html?triangle3sides

• Construct a triangle with 2 sides of length 15 cm and 9 cm and an included angle of 35�.

Side-angle-side animation here:
http://www.mathsonline.org/pages/animationPage.html?triangle2sides

• Construct a triangle with a 25� angle, a 10 cm included side, and a 100� angle.

Angle-side-angle animation here:
http://www.mathsonline.org/pages/animationPage.html?triangle1side

Here are some more facts about constructing figures that students might come across in their explorations:

• It is not true that there is a unique triangle with given angles, as Figure 10 shows. The question: “what do
such triangles have in common?” will be taken up in the next section, and discussed in detail in 8th grade.

a

b c

a0

b0

c0

Figure 10

• There is a unique circle with given center and radius. Given two circles of the same radius, we can slide the
center of one to coincide with the center of the other. Then the circles coincide as well.

• Given two positive numbers a, b we can construct a rectangle with side lengths a and b: just go from the
origin along the horizontal axis a distance a, and along the vertical axis a distance b. These are two sides of
the desired rectangle. Furthermore, given any other rectangle of side lengths a and b, we can move it by a
slide and a rotation so that it coincides with the constructed rectangle.
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Section 5.2: Scale Drawings (Objects that have the same shape)

The central idea of this section is scale and its relationship to ratio and proportion. Students will use ideas about
ratio, proportion, and scale to a) change the size of an image and b) determine if two images are scaled versions
of each other.

By the end of this section, student should understand that we can change the scale of an object to suit our needs.
For example, we can make a map where 1 inch equals one mile; lay out a floor plan where 2 feet equals 1.4 cm
from a diagram; or draw a large version of an ant where 3 centimeters equals 1 mm. In each of these situations,
the “shape characteristics” of the object remain the same, what has changed is size. Objects can be scaled up or
scale down. Through explorations of scaling exercises, students will see that all lengths of the given object are
changed by the same factor in the scaled representation; that the factor is called the scale factor.

The term “similar” is not defined in Grade 7; here students continue to develop an intuitive understanding of “the
same shape,” so that the concept of similarity (introduced in Grade 8) will come naturally. Throughout this section
students should clearly distinguish between two objects that are of the same shape and dimension and objects that
are scaled versions of each other. In particular students will come to understand that two polygonal figures that
are scaled versions of each other have equal angles and corresponding sides in a ratio of a:b where a , b. Students
should also distinguish between saying the ratio of object A to object B is a:b and the scale factor from A to B is
b/a. This idea links ratio and proportional thinking to scaling.

Students will learn to find the scale factor from one object to the other from diagrams, values and/or proportion
information. Students should be able to fluidly go from a smaller object to a larger scaled version of the object
or from a larger object to a smaller scaled version giving either or both the proportional constant and/or the scale
factor.

Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a
scale drawing and reproducing a scale drawing at a di↵erent scale. 7.G.1.

Scale drawings are diagrams of real measurements with a di↵erent unit of measurement, arranged so as to have
the same shape as the original they represent. The scale describes the relation between the unit of measurement
in the drawing and that of the original. Examples of scale models include photographs, doll houses, model trains,
architectural designs, souvenirs, maps, and technical drawings for science and engineering. Today with computer
image manipulation even in our word processing programs, scaling figures, text, and photos is a common activity.
Dynamic visualization tools like Google Earth provide ample real life experience with scale maps and figures.

What exactly is the same and what is di↵erent about these scale models and their original counterparts? Linear
dimensions on scale models are proportional to the corresponding length on the original: the ratio of any length in
the drawing to the corresponding actual length of the original is the scale of the drawing, and is the same ratio for
any measurement taken on the image. Distortions of a given shape do not count as a scale model. For example, a
Barbie doll or cartoon character (like Wreck-it-Ralph) is not proportional to any real human.

Figure 11 (next page) shows a scale drawing of an ant. How long is this ant?

To find the real ant’s length we measure the black scale line with a ruler, in order to discover the scale of the
drawing. The actual length in your image will depend upon the platform on which you are working, so for this
discussion, let us say that the length of that line in the figure is 3 cm, or 30 mm. Thus, the scale for this image
is 30 to 1: every linear measurement on the image is 30 times the size of the corresponding measurement of the
ant. To answer the question about the actual size of the ant, we have to judge the overall length of the ant’s image:
this can be a little tricky since we must decide where to place the ruler over the top of the image. Should one start
measuring at the antennae and stop at the end of the tail? If one holds the ruler diagonally over the top from head
to rear foot, a di↵erent measurement results. Nonetheless, it appears that the length of the ant image is about 10
cm, or 100 mm.

Since the scale of image is 30 to 1, every length on the image is 30 times the actual length. Or, the actual length
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Figure 11

Nylanderia fulva, side view of a worker (drawing by Joe MacGown). Image comes from Mississippi Entomolog-
ical Museum.

is one-thirtieth the length on the image, so that the actual length of the ant is 100/30 = 3 1/3 mm. To clarify the
di↵erence between “ratio” and “scale factor,:” the ratio is 30:1, however the scale factor is 1/30th. In other words,
one multiplies each length of the original by 1/30 to get the original size of the ant. For example, if the ratio was
original: half of 1: 1

2 , then the scale factor would be 1
2 .

Alternatively, we could set up a proportion. The ratio of 1 mm to 3 cm corresponds to the ratio of the ant’s actual
length in mm to the measurement on the drawing in cm. Hence,

1 mm
3 cm

=
x mm
10 cm

.

After solving, we find that x = 10
3 , so the ant is 3 1

3 mm in length. That seems about right for one teeny little ant.

One might also wonder how the artist went about creating this picture. The artist probably looked at an ant
specimen under a microscope and drew what he saw as accurately as possible. In real life, biologists often use
tiny grids to help them determine the scale of small things they observe under a microscope.

Some important considerations when working with scale drawings:

• The scale of a drawing can be expressed with and without units. For the ant drawing above, the scale (from
image to actual) is 3 cm to 1 mm, or 3:0.1 (or 30 to 1: the ant has been magnified 30 times). Maps are
scale drawings of actual geography, and the scale may be indicated by a statement: “1 inch = 20 miles,”
or it might be expressed by labeling an actual line in the drawing with the actual length it represents (as
in Figures 15 and 16 below). The scale can also be represented as a unit less ratio, such as 1:24,000. If
this ratio appears on the map it is telling us that any length on the map represents an actual length that is
24,000 times as long, independent of whether the measurement is made in feet and miles, or in meters and
kilometers. Notice (at the bottom left of Figures 15 and 16) that the scale is written with the dimension of
the drawing first, and the dimension of the actual last.
• In this sense, scale factors are unitless constants that indicate the relationship between lengths in a scale

drawing or model and its real life counterpart. So, a scale factor can be expressed as fraction or even
a percentage. If a model is 1% of the real thing (or perhaps a model is 250% of the original), then the
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percentage expresses the ratio of the length measures in the model to the length measures of the actual
object. In this case, any unit may be used. In a model that is 1% of the original, one yard in the original
will be 1/100th of a yard in the model. One centimeter in the model will represent 100 centimeters of the
original.

• If one uses a scale factor bigger than one, the replica is larger than the original, while if the scale factor is
less than one, the model is smaller than the original.

• It is important to keep track of units, if the units are made explicit. A 1:2 ratio or scale factor is di↵erent
from a ratio of 1 inch: 2 yards.

A specification of 1:2 ratio without explicit units tells us that the units are the same, so, for example,
distances on the scale drawing are half the original distances, so 1 cm corresponds to 2 cm in real life, 1
inch corresponds to 2 inches, and 1 foot corresponds to 2 feet. The 1 inch: 2 yards ratio would be equivalent
to a scale of 1:72 since there are 36 inches in a yard. A scale drawing where 1 cm corresponds to 1 km does
not have a 1:1 scale factor, but rather 1:100,000 since a centimeter is 1/100000 of a kilometer.

• Angles in a scale drawing are the same as the corresponding angle measures in the original.

Some techniques for making scale drawings:

• Overlay a grid, then copy the figure from corresponding grid squares onto a grid of a di↵erent size.

• Use proportions to make corresponding side lengths to outline the figure, using the same angle measures
from one segment to the next.

• Use computer programs to make scale drawings. (such as Geometer’s Sketchpad or Geogebra). If you have
a tablet or a smartphone, draw a figure and then expand or contract it in such a way as to have one image be
a scale drawing of the other.

When comparing a scale model to the real thing, dimension is also important. As we have seen measures of length
scale by the scale factor, but is this the same for area, or, in 3D modeling, volume? Consider this situation:

Figure 12

Although the ratio of the top image to the bottom (in Figure 13) is 2:3, the top rectangle contains 60 squares, while
the right rectangle contains 135 squares; so in this case the area ratio is 4:9.
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Example 4.

Draw a 2x6 rectangle on a piece of graph paper, and then another rectangle in the ratio 1:3. What is the
ratio of the areas of these rectangles?

Solution. : The count gives the ratio 12:108, which simplifies to 1:9.

In Figure 13, the scale ratio across all squares is 1:2:3:4:5.. Note that the areas are in the ratio 1:4:9:16:25. These
examples support the statement that the scale of area in a scale drawing is the square of the scale of length.

Figure 13

This is true not only for rectangles, but for all figures. For example, since we can move a triangle o↵ a parallelo-
gram to make a rectangle of the same area, it is true of parallelograms, and since a triangle s half a parallelogram
it is also true for triangles. In the next section we will show this for the area inside a circle as well.

Area of Parallelogram = 30 Unit Squares Area of triangle = 12.5 Unit Squares

Figure 14

A fact that comes out of the above discussion of rectangles is this: for two rectangles, if one is a scale drawing of
the other, then the ratio of corresponding sides of the rectangles is the same. It is not hard to see that this is also
true that two rectangles with the same ratio of sides are scale drawings of each other.

Example 5.

Dave was planning a camping trip to Salina, Utah. He used an online map to find the approximate area
of the Butch Cassidy Campground, and to find the distance from the campground to his grandmother’s
house. His grandmother lives on the northeast corner of 100 East and 200 North in Salina. (See Figure
15). In fact, Dave’s grandmother owns that entire block (between 100 and 200 East and 200 and 300
North). What is the area of her property?

Solution. The campground, he reasoned using his index finger tip to measure, looks like it is about
1000 feet by 500 feet, so that’s 500,000 square feet in area. He wondered how many acres that would be
and quickly looked up the information that 1 acre = 43,560 square feet. Okay, he thought, and punched
in 500,000 divided by 43,560 into his calculator, so the campground is about 11.5 acres. Now, to get to
Grandma’s house, he thought and continued using his finger to measure. It looks like it is over 5000 feet
to get to Main Street from the campground entrance, and then probably just over another 1000 feet after
that. Recalling that about 5000 feet make a mile, he decides it will be over a mile, but less than a mile
and a half, to grandma’s house. As for the area of grandmother’s property: her block seems to be about
800 feet on a side, so the area of that block s 64,000 square feet, or about 1.5 acres.
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Figure 15: Google maps - Salina, Utah.

Dave then used a di↵erent scale map to approximate the distance he’d have to bike to get from the Butch Cassidy
Campground to Palisade State Park. This time he decided to print the map and use his ruler. (Figure 16)

Figure 16: Google maps - Salina, Utah.
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Section 5.3. Solving Problems with Circles

In this section circumference and area of a circle will be explored from the perspective of scaling, that is, we start
by measuring the diameter and circumference of various circles and noting that the ratio of the circumference to the
radius is constant (2⇡). This leads to discussions about all circles being scaled versions of each other and eventually
“developing” an algorithm for finding the area of a circle using strategies used throughout mathematical history.
In these explorations, two big ideas are discovered: 1) cutting up a figure and rearranging the pieces preserves
area, and 2) creating a rectangle is a convenient way to find area. Additionally, we will connect the formula for
finding the area of a circle (⇡r2) to finding the area of a triangle where the base is the circumference of the circle
and the height is the radius (A = Cr/2).

The section will close by applying what was learned to problem situations. Chapter 6 will use ideas of how
circumference and area are connected to write equations to solve problems but in this section students should
solve problems using informal strategies to solidify their understanding.

Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal
derivation of the relationship between the circumference and area of a circle. 7.G.4 .

C

Center

r

Figure 17

Figure 18

Recall that a circle is the set of all points equidistant from a center. We draw
circles with a compass by fixing the point of the compass at the center, using
a fixed angle at the compass hinge, and rotating the pencil point around to
mark the circle. Draw a line segment from the center to a point on the circle;
this is a radius of the circle. The plural of “radius” is “radii.” By definition,
all radii are of the same length. If we take any radius, and extend that line
segment from the center in the opposite direction of the given radius, we get
a diameter of the circle (Figure 17).

Observe that any two circles are scale drawings of each other, where the scale
factor is the quotient of the lengths of the radii of the two circles. Therefore,
if we know the length of the circumference of a circle of radius 1 unit, then
the length of the circumference of a circle of radius r units is r times that
length. Similarly, for area, except that the scale factor of is r2. We can see
that as follows: Draw two circles on a grid, one with twice the radius of the
other (Figure 18).

Now count the number of squares of the grid that are more than half inside the
circle (use symmetry to make the counting easier). In our case those numbers
are 32 for the smaller circle, and 120 for the larger one. This is about 4 times
as large. This should be the same for all circles drawn by students: the number
for the larger circle is about four times as large as the number for the smaller
circle. If we took a di↵erent ratio, or a finer grid, the answer will be the same;
if the radius is multiplied by some number a, then the area is multiplied by
a2. It follows that, if we know the area of a circle of radius 1 unit, then the
area of a circle of radius r units is r2 times that area. So, the ratio of the area
of a circle and the square of its radius is a constant, and that constant is the
area of circle of radius 1 unit, and is designated by.the greek letter pi, written
⇡. Thus we get this formula for the area A of a circle in terms of its radius r:
A = ⇡r2.

As a side note, methods for computing the area of simple polygons was
known to ancient civilizations like the Egyptians, Babylonians and Hindus
from very early times in Mathematics. But computing the area of circular
regions posed a challenge. Archimedes (287 BC - 212 BC) wrote about us-
ing a method of approximating the area of a circle with polygons, as worked
through 5.3b Classwork Activity.
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The formula A = ⇡r2 doesn’t help us much until we know the numerical value of ⇡, or at least a good approximation
of that numerical value. The exercise we have just done gives us an estimate for ⇡ by the count made in the Figure
19: for a circle of radius 6, we counted 120 squares more than half inside circle. So, 120 = ⇡62, from which we
get the estimate 120/36 = 3.33 as an approximate value for ⇡. Now, if we took an even larger circle on the same
grid, we’d get a better approximation, and presumably we can get as good an approximation as we want in this
way. It would be interesting for each student in the class to make such a calculation, and then take the average as
a statistical experimental estimate for ⇡.

Let’s turn to circumference of a circle. By the same reasoning (that is, estimating the perimeter of the figure
consisting of all the squares counted for area), we can give good evidence that the ratio of the length of its
circumference to the length of the radius is constant. That this constant is related to ⇡ is amazing; we will now
demonstrate this using an ancient Egyptian argument.

First, draw a circle of radius r, and let us denote its area by A and the length of the circumference by C. Fill the
circle with a coiled rope, starting at the center and circling around until the circumference is reached (Figure 19).

Figure 19

Place a straight edge along a radius and cut the rope all the way through along that straight edge (see figure 20).

Figure 20

Flatten out the pieces of the rope so that each piece is a horizontal line with the outside piece at the bottom, and
the center at the top, to get the isosceles triangle in Figure 21
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Figure 21

We know that the area of a triangle is one half the product of the base times the height. For this triangle, the base
is the circumference of the circle, and the height the radius. Thus the triangle has area 1

2Cr. But since the area is
that filled in by the rope, whether it be coiled in the circle or flattened in the triangle, we conclude that this is the
area of the circle:

A =
1
2

Cr .

If we replace A by ⇡r2, we can solve ⇡r2 = 1
2Cr for r to obtain the formula for circumference in terms of radius:

C = 2⇡r .

This “real” construction gives us a way of estimating ⇡. For the particular circle in Figures 20-22, the radius is 5
inches, and the circumference (the base of the triangle in the above figure) is 32 inches. From C = 2⇡r we can
write 32 = 2⇡(5), so we get the estimate 3.2 for the value of ⇡.

Because the rope has substantial thickness, this is a rough estimate, and probably larger than the true value of ⇡.
To do better, select a circular disc of some thickness. Measure the length of a radius, call it r. Now take a thin
string and wrap it around the circumference of the disc and mark the length that just makes one full loop around
the disc. Measure the length of this string, call it C. Then the ratio C/2r is an approximation to the value of ⇡.

The area formula provides another way to evaluate ⇡. Inscribe a regular polygon with n sides, as in Figure 22
(where n = 10):

0

1

2

3

0 ⇡
2

⇡ 3⇡
2

2⇡ 5⇡
2

3⇡

Figure 22

The area of one triangle can be estimated by measuring the base and altitude. Then the area of the polygon is n
times that number, and this provides an estimate for the area of the circle.
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This second method was used in antiquity by Archimedes, with n = 16 to get an approximation for ⇡ correct to
three figures. Figure 22 also gives us another way of determining the relation A = 1

2Cr. For each triangle, the area
of the triangle is �) = 1

2 br, where � is the area of the triangle, and b is its base, and the height is the radius r. Now
adding this over all the triangles, amounts to multiplying both sides of the equation by n, the number of triangles,
giving us A = 1

2Cr for the circle.

Section 5.4: Angle Relationships

The closing section involves applications with angle relationships for vertical angles, complementary angles and
supplementary angles. In addition, students will use concepts involving angles to relate scaling of triangles and
circles. Practice with the skills learned in this section will be further developed in Chapter 6 when students write
equations involving angles.

Use facts about supplementary, complementary, vertical, and adjacent angles to write and solve multi-step prob-
lems for an unknown angle in a figure. 7.G.5

First, let us recall some concepts having to do with combining angles.

The sum of the angles \ABC and \DEF is defined as follows (see Figure 23) : Move (by sliding and rotating)
\DEF so that the vertices B and E coincide, so that rays BA and ED coincide and so that ray EF is not on the
same side of BC as BA. Then the sum of the given angles is the angle \ABF.

B

A

C E

D

F
B = E

A

C = D

F

Figure 23

When two lines intersect at a point, four angles are formed. Figure 24 shows line AB intersecting line CD at T .
Angles \ATC and \CT B are adjacent angles on a straight line, hence the sum of the measure of these two angles
is 180�. Such angles are called supplementary. Angles \ATC and \BT D are called vertical angles, in the sense
that they are opposing angles at a vertex. Angles \CT B and \DT A are vertical angles as well. Vertical angles
are equal, since they are both supplementary to the same angle. That is, as in Figure 24, \ATC and \BT D are
supplementary to \DT A , so are equal.

T

D

C

A

B

Figure 24

If all the angles in Figure 24 are equal, then they are all of measure 90�; that is, they are all right angles. In this
case, the lines AB and CD are said to be perpendicular.
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Two lines are said to be parallel if they have no point of intersection. To be clear about this: not just “no point
of intersection on our piece of paper,” nor in our line of vision, but “no point of intersection” anywhere. This
definition supposes that we can imagine the whole plane, infinite in extent in all directions, and can see that the
two lines called parallel indeed never intersect. This, then, is a theoretical, rather than an operational definition,
and for that reason bothered the mathematicians in Alexander’s day (and for the next 2000+ years). The Greeks
did the best they could with this problem, and postulated the intersection point in the Elements of Geometry as
follows.

Given two lines L and L0, draw a third line L” that intersects both given lines (see Figure 25).

L

L0

x

y

L00

Figure 25

Focus on the corresponding angles x and y at those intersection points; corresponding in the sense that they are in
the same position relative to the two points of intersection. The two lines L and L0 are called parallel if the angles
x and y are of the same measure. In our figure it appears that x and y are of the same measure, so the lines L
and L0 would be parallel by this definition. It also looks like lines L and L0 also will never intersect, but since we
cannot see the full extent of the whole plane, we cannot know. Confronted with this dilemma, Euclid could show
that these two definitions of “parallel” were the same by turning the statement around: If lines L and L0 intersect
at some point V , then the angles x and y cannot be equal. This, however, required knowledge of an important fact
about the angles of a triangle, to which we now turn.

Example 6.

The sum of the angles of a triangle is 180�. To see this, draw a triangle, cut out the angles and put all
the vertices together, so that the angles are adjacent and not overlapping. You will get a straight angle
(see Figure 26). If everyone in the class does this, they will all get the same result: a straight angle.
This provides convincing experimental evidence that the statement is true, but it is important to keep in
mind that, while experimental evidence might confirm a hypothesis, it does not explain why it is true.
In mathematics, such explanations come out of proof. In grade 8 students will explore explanations of
this fact.

Figure 26

Now, we can complete Euclid’s argument. Return to Figure 25 and suppose the lines L and L0 are not parallel;
that is, they intersect at some point V . Figure 27 portrays this; although the lines may have extended for millions
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of miles before arriving at that intersection, this image represent the situation. Since the angle at V has to have
positive measure, the angles at A and B ( of the triangle �AVB) have measures that add up to less than 180�, so
those angles cannot be supplementary. Since the angle \ABV and x are supplementary, x and y do not have the
same measure.

It follows that if the measures of the angles x and y are equal, then the lines L and L0 can never intersect. For if
they did intersect we’d have a picture just like that of the lines L and L0, and we just saw that if the lines intersect,
the interior angles cannot be equal.

L

L0

xB

y
A

L00

V

Figure 27

Example 7.

In Figure 30, the measures of two angles are given. Find the measures of the remaining angles.

A
B

C

D
E

F

V

74°

12°

Figure 28

Solution. The sum of the two given angles and \CVD is a straight angle, so has 180�. This tells
us that 74 + \CVD + 12 = 180, giving us the measure of \CVD, 94�. Each of the other angles is the
vertical angle associated to one of these, so that gives us all the measures. Going clockwise around V ,
the measures are 74�, 94�, 12�, 74�, 94�, 12�.

Example 8.

Consider the rectngle in Figure 31. There are 9 labeled angles. The figure provides the measure of three
of these angles. Find the measure of the remaining angles.

Solution. We see a complex geometric diagram that shows many angle relationships, so we should
proceed carefully using the basic angle relationships: vertical angles are equal, supplementary angles
add to 180�, the sum of the angles of a triangle is 180�, and transversals intersect parallel lines at equal
angles.

• \g = 67�. Since we are given the measure of two angles in �CEG, we use the fact that the sum
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A B

CD E

F

G

b2 = 37�
b1

c = 90�

g

e1 = 23�

a2

a1

d

e2

Figure 29a

of the angles of a triangle is 180�.

• \b1 = 143�, because \b1 is supplementary to \b2 of 87�.

• \a2 = 23�. AE is transveral to the lines DCE and ABF, so \a2 has the same measyer as \e1.

• \a1 = 67� since ii is complementary to \a2.

• \e2 = 63� since ii is complementary to \b2.

• \d cannot be determined. One way to see that is to give up trying. A more convincing way is this:
notice that the vertical line segmentCG can be moved horizontally without changing any of the
given angles. However, \d cdoes change as CG moves.

A B

CD E

F

G

b2 = 37�
b1 = 143�

c = 90�

g = 67�

e1 = 23�

a2 = 23�

a1 = 67�

d

e2 = 23�

Figure 29b

Extension. The fact that the sum of the angles of a triangle is a straight angle is a powerful fact in geometry,
leading to many interesting observations. Students interested in the application of algebra to geometry might find
the following examples of interest.
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Example 9.

Draw a circle and label the center O. In the circle draw a diameter, labeling the endpoints A and B. Now
select a point C on the circle, di↵erent from A and B and draw the triangle ABC. See Figure 30:

A B

C

O

Figure 30

With a protractor, ask students to find the measure of \ACB. All answers from the class will be that
the measure is is 90�, On the basis of this experiment, the class can hypothesize: If a triangle is cir-
cumscribed by a circle so that one side of the triangle is a diameter, then the triangle is a right triangle.
Students may want to go further: given a right triangle, the circumscribing circle has the hypotenuse as
a diameter. The following text is intended to provide a guide to this exploration.

Draw the ray from O to C. Lines AO,BO, CO are all of equal length since they are all radii of the
circle. In particular, triangles AOC and BOC are isosceles triangles, and so the base angles are equal
(a property of isosceles triangles). That tells us that the measure of \ACO is also x and the measure of
\BCO is also y, so that the measure of \ACB is x + y. But, since the sum of the measures of the angles
of a triangle is 180�, we have

x + \ACB + y = x + (x + y) + y = 180 ,

so 2(x + y) = 180, or x + y = 90 and thus \ACB has measure 90�.

The student will remember, from 5th grade, the fact that for an isosceles triangle (a triangle with two sides equal),
the base angles are equal. This can be demonstrated as follows: draw an isosceles triangle AVB, as in the following
figure, with the lengths of AV and BV equal. Now fold the triangle along a line that goes through the vertex V , so
that the line segment AB folds over onto itself. The student will see that in fact the triangle on one side is perfectly
superimposed on the triangle on the other side, so that the angle at A lies directly over the angle at B, and so they
are of equal measure.

Example 10.

Here is another interesting fact that follows from the basic fact about the sum of the angles of a triangle.
Draw a circle and select three points A,V, B on the circle and draw the angle AVB. Suppose that the
center of the circle O lies inside \AVB, as in the figure below. Draw the line segments AO and BO.
Then the measure of \AVB is half the measure of \AOB.

Solution. To see this, label the measures of the angles with the letters x, y, z,w, u as in the diagram.
Because the lines AO, VO, BO are all radii, and thus of the same lengths, angles with the same letter
indeed do have the same measure. Now, look at all the triangles involved to get:

2x + w = 180� , 2y + z = 180� , u + w + z = 360� .
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A

B

V

x

x

y

y

w
u

z
O

Figure 31

Add the first two equations to get

2x + 2y + w + z = 360�

and use the third equation to get 2x + 2y + 360 � u = 360�, and now conclude that u = 2(x + y). But u is
the measure of \AOB and x + y is the measure of \AVB.

Example 11.

By drawing Figure 31 to solve Example 10 we assumed that the given angle had its rays on opposite
sides of the center of the triangle. However, the statement is still true for any angle with vertex on the
circle. Students may want to try to figure out why.

End Extension
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