
Chapter 1
Linear Equations in One Variable

The first three chapters of grade 8 form a unit that completes the discussion of linear equations started in 6th
grade, and their solution by graphical and algebraic techniques. The emphasis during these three chapters moves
gradually from that of “equations” and “unknowns” to that of “functions” and “variables.” The first chapter is
about solving linear equations; in the second we move to the graphical interpretation of linear expressions and the
understanding of the constant rate of change for linear functions (to be compared to the constant of proportionality
of a proportional relation), and then to the “slope” of a line, and how it can be interpreted as the rate of change of
the associated linear expression. Note that in this discussion we have been using the word expression rather than
function, so that the students will become familiar with the idea of evaluating linear expressions, and graphing
those values, as a lead in to the concept of function. This is engaged in the third chapter in which the entire
subject of linear functions is brought together and examined from a variety of perspectives. In Chaprer 4 we
return to solutions of equations, this time with pairs of equations in two variables for which we seek values of the
variables that solve both equations (the solutions of the simultaneous equations). Finally, in Chapter 5 our focus
turns completely to the concept of function, shifting emphasis to describing the relation between the two variables,
rather than the mechanics of the function.

This chapter begins with a focus on the distinction between expressions and equations. The analogy is with
language: the analog of “sentence” is equation and that of “phrase” is expression. An equation is a specific kind of
sentence: it expresses the equality between two expressions. These equations involve certain specific numbers and
letters. We refer to the letters as unknowns - that is they represent actual numbers which are not yet made specific;
indeed, the task is to find the values of the unknowns that make the equation true. If an equation is true for all
possible numerical values of the unknowns (such as x + x = 2x), then the equation is said to be an equivalence.
Arithmetic operations transform expressions into equivalent expressions; we come to understand that for linear
expressions, the converse is true: we can get from one expression to an equivalent one by a sequence of arithmetic
operations.

In chapter 2 we begin to change the way we look at the letters used in algebra from that of unknown to variable,
and together with that, the understanding of an equation involving two variables as expressing a relation between
them. We do this first in the context of proportion, but then go to general linear equations and the ideas of rate of
change and slope of the graph. But in chapter 1 we are only interested in finding that (or those) number(s), if any,
which when substituted for the unknown make the equation true. These are the solutions. We do this in specific
contexts, seeing how to translate language sentences about numbers into equations involving linear expressions.

Linear Expressions

A linear expression is a formula consisting of a sum of terms of the form ax and b, where a and b are numbers
and x represents an unknown. By unknown we mean a symbol which stands for a number; it could be a specific
one yet to be determined, or one yet to be chosen, or any possible number, depending upon the context. Since “x”
represents an unknown, we could replace it by any letter and still have the same sentence. In particular, in solving
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a problem in context, it is a good idea to pick a letter suggested by the context.

Example 1.

These are all linear expressions:

a. 3x − 5 b. 3t c. − 5 d. 3u + 2u + 17 e. 3x −
12x − 16

4
f.

2
5

y +
3
10

g. 6(2x − 5) + 11

Notice (as in examples b. and c.) that we could have either a or b, or both, equal to zero. When we
have a particular problem, we are unlikely to start with a linear expression of the form c, but, in our
manipulations with the expression, we may end up there. For example, when we combine terms in e we
end up with 3x − 3x + 4, which is just 4.

To evaluate a linear expression is to substitute a number for the unknown and calculate the resulting value. For
example, if we evaluate d at u = 1, we get 22, at u = −3.5, we get −0.5. Often we are interested in how the value
of the expression changes as we change the value of x and evaluate, and so we generate a table of corresponding
values of x and the expression, and go on to graph those points on a coordinate plane. Were we to do so, it always
turns out that the points lie on a straight line, and that is why expressions of this form are called “linear”. But we
are getting ahead of ourselves; we will return to this discussion in the next chapter.

It is often the case that different linear expressions have the same meaning: for example x+ x and 2x have the same
meaning, as do x − x and 0. By the same meaning we mean that a substitution of any number for the unknown x
in each expression produces the same numerical result.

Example 2.

Consider these linear expressions:

a. 2(x + 5) b. 2x + 10 c. x + 10 d. 2x + 5

a. and b. have the same meaning, since every substitution of a number for x gives the same result. As
for a. and c. , although the substitution of 0 for x produces the same result, it will not work for any
other number. And the situation for a. and d. is even worse: there is no number for which they both
give the same result,

How do we know that a. and b. have the same meaning, since we cannot text every number? The answer lies in
the laws of arithmetic. We say that two linear expressions are equivalent if we can move from one expression to
the other using the laws of arithmetic. When two linear expressions are equivalent, they have the same meaning:
to be precise, any number substituted for the unknown in the expression always returns the same value. Indeed,
this is why the “laws of arithmetic” are called laws: they preserve the meaning of the expression. This is very
convenient: to show that two expressions have the same meaning, we do not have to check every number (an
impossible task in any event); it is enough to show that we can move from one expression to the other using the
laws of arithmetic. On the other hand, to show that two expressions are not equivalent, just find one number that
gives different results when substituted for the unknown in the expressions.

In this chapter we want to work precisely with these ideas of equivalence of linear expression, leading to simpli-
fying and solving. In the next chapter we will see that the graph of a linear expression (where y is the value of the
expression for a value of x) is a straight line. Since a line is determined by any two points on the line, we will
see that two linear expressions are equivalent, if they return the same values for any numbers substituting for the
unknown.

Every linear expression is equivalent to one in the form ax + b by applying the laws of arithmetic. This process
is sometimes called simplifying the expression. However, “simplify” is not always what we want to do with an
expression. For example, if we change 7x − 28 to 7(x − 4), then we learn that in the equation y = 7x − 28, y is
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proportional to x − 4. So, if we are interested in the behavior of x and y in the equation y = 7x − 28, the form
y = 7(x − 4) is “simpler.” In general, the word “simplify” should be tied to the goal of the work being done; right
here it is to minimize the number of symbols necessary to understand the expression.

Every one of the above expressions in example 1 can be put in the form ax + b for some numbers a and b, using
arithmetic operations. As for examples a, b, c and f, they are already in that form. Let’s now look at the others,
and a few more just to review all the possibilities.

Example 3.

a. example 1d: 3u + 2u + 17 is equivalent to 5u + 17. For we can combine similar terms: “three u’s
plus two u’s” is the same as “5u.”

b. example 1e: By doing the division implied by the fraction, we see that 3x − 12x−16
4 is equivalent

to 3x − 3x + 4, which is just 4 (as mentioned above).

c. example 1g: Distribute the 6 in 6(2x − 5) + 11 to get 12x − 30 + 11, and now add −30 + 11, to get
12x − 19.

d. 4x + 5 and 2x + 3x + 5 are not equivalent. Substitute 1 for x, and obtain 9 in the first expression
and 10 in the second.

e. 3x + 5 and 6x − 1 are not equivalent: if we substitute 1 for x, we get 8 in the first expression and
5 in the second. But be careful: if we substitute 2 for x, we get the same result: 3(2) + 5 = 11 and
6(2) − 1 = 11. Since we can find at least one value for the unknown that gives different results to
the expression, they are not equivalent.

Example 4.

6x − 20 + 2(x − 4) and 4(2x − 7) are equivalent.

Let’s go through the steps, giving clear reference to the relevant laws of arithmetic.

Step 1. Start with 6x− 20 + 2(x− 4). Distribute the 2 to remove the parentheses, to get: 6x− 20 + 2x− 8.

Step 2. Combine like terms to get: 8x − 28

Step 3. Factor out 4 to get 4(2x − 7) which is precisely the second expression.

There are many ways to go from one expression to an equivalent one. For example, we could distribute and collect
terms in both expressions to obtain 8x − 28 from each. To put this another way: two expressions are equivalent if
they are both equivalent to a third expression.

In summary, the end result of simplification is an expression of the form ax +b: This is always the case: any linear
expression simplifies to the form ax + b. The word “simplify” is often ambiguous - it usually depends upon where
it is you want to go with the expression; in this case, it is to the form ax + b.

Section 1.1. Solving linear equations: obtaining the desired value of an expression

Solve linear equations with rational number coefficients, including equations whose solutions require expanding
expressions using the distributive property and collecting like terms. 8.EE.7.ab

In the introduction to this chapter, we talked about “evaluating expressions”. Here we ask: given a linear expres-
sion, and a number c, for what value of the unknown does the expression compute to c? This can be restated as:
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given the expression ax + b and a number c, find the value of x that produces that c. Let’s first review what was
done in grade 7.

Example 5.

a. For what x does 2x + 5 evaluate to 17? Otherwise put: solve 2x + 5 = 17.

Solution. Subtract 5 from both sides of the equation to get 2x = 17 − 5. Replace 17 − 5 by 12 to get
2x = 12. Now divide both sides by 2 to get x = 6.

b. For what x does 2(x + 5) evaluate to 24? Otherwise put: solve 2(x − 5) = 24.

Solution. Divide both sides by 2 to get x − 5 = 12. Now add 5 to both sides: x = 17.

Note that in the second problem, we’d rather not use the distributive property: it is easier and quicker to
first divide by 2 than to distribute the 2.

Now we want to work more complicated expressions. The procedure will be the same, except that first we have to
appropriately simplify the expression. Let’s work with the expressions e, f and g of example 1.

Example 6.

a. For what value or x is 3x −
12x − 16

4
equal to 5?

Solution. First, we reduce the fraction to obtain the equation 3x − (3x − 4) = 5, and then use the
distributive property to get 3x − 3x + 4 = 5. Then combine terms to obtain 4 = 5. Since 4 is not equal
to 5, there is no value of x to obtain 5 from this expression.

b. Let’s slightly change the expression so as to obtain a more satisfying result. For what value or x

is 5x −
12x − 16

4
equal to 25?

Solution. Again, we reduce the fraction, this time obtaining 5x − 3x + 4 = 25. Combining terms, this
becomes 2x + 4 = 25, which has the solution x = 21

2 .

Example 7.

For what value of x is
2
5

x +
3

10
equal to 0.375?

Solution. Otherwise put, solve
2
5

x +
3

10
= 0.375

First, Multiply both sides by 10 to obtain

4x + 3 = 3.75

Subtract 3 from both sides getting 4x = 0.75, and divide by 4 getting x = 0.1875

This is a good time to point out that there can be many ways to solve a problem, and in this case, there
may be better ways. Noticing that the notation is hybrid (we have both fractions and decimals) we could
move to one notation or the other.
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Yet another way would be to write all numbers as decimals to get 0.4x + 0.3 = 0.375 and now multiply
by 10 to get 4x + 3 = 3.75, and now proceed as above.

Write all numbers as fractions to get

2
5

x +
3
10

=
3
8

Multiply by 40 to eliminate denominators, getting

16x + 12 = 15

Subtract 12 from both sides to get x = 3
16

Example 8.

a. For what value of x is 6(2x − 5) + 11 = 53?

b. For what value of x is 6(2x − 5) + 11 = y?

Solution. a. We want to illustrate two different ways to solve this problem.

a1. Distribute the 6 and add −30 to 11: 12x − 19 = 53,

Add 19 to both sides: 12x = 72, and now divide by 12 to get x = 6

a2. Subtract 11 from both sides : 6(2x − 5) = 42,

Divide by 6: 2x − 5 = 7

Add 5 to both sides: 2x = 12,

and now divide by 2 to get the answer x = 6.

b. First, apply the first two steps of a1 to get 12x = y + 19. Now divide by 12 to get the result

x =
y + 19

12

Section 1.2. Solving linear equations: equating two expressions

A linear equation is an assertion that two linear expressions are equal. In the above, we have considered the case
where one of the expressions is simply a number, and put it in the context of evaluation of expressions. Now we
want to find out for what value of the unknown two expressions produce the same result. This may seem more
difficult to the students, but the ideas are precisely the same. The difficulty may be this: it is clear that we can
subtract 5 from both sides of the equation to get an equivalent equation, but since we don’t know what x is, is it
really all right to subtract 5x from both sides? Of course it is, since x does represent a specific number, and so
the laws of arithmetic apply. Later, when we move from the concept of “unknown” to that of “variable”, then x
is a quite different object, representing not some particular number that we don’t know just yet, but any possible
number. Nevertheless, the same reasoning applies: the laws of arithmetic actually do hold for any numbers and
any expressions.
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If a linear equation is an assertion that two linear expressions are equal, then “solving” the equation is to find out
for what numbers the assertion is true. Two linear equations are equivalent if one can be obtained from the other
by a succession of applications of laws of arithmetic. The goal of solving the equation is to find a sequence of
equivalent equations, starting with the given equation and ending up with something like x = 5. Of course, we
may not end up there: just as the expression x − x + 1 is equivalent to the expression 1, the equation x − x + 1 = 2
is equivalent to 1 = 2, which of course is false. Since it is false, no matter what value x takes there is no solution.

In general, the result of this process may be “all numbers” or “a particular number” or “no numbers”. Let’s look
at some examples:

Example 9.

a. 2(x − 5) = 3x − 1 b. 2(x + 5) = 2x + 10 c. 7 = 5 d. 7x = 5x

e. 3(x − 5) = 2x f. 7 = 5 + 2 g. 7x = 7x + 1

The examples presented here are designed to indicate the breadth of issues that may come up as students learn
this subject, and not to provide instructions. As you look through them keep in mind that the truth or falsity of
the equation is something to be determined: it is our task. This is different from the validity of the equation as
a statement. To illustrate: “Julius Caesar was the first President of the United States” is a valid statement, but
false. The assertion “Mr. XXX was the first President of the United States” is a valid statement, but doesn’t tell
us much (except that that person was male). The equally valid and true statement is “George Washington was the
first President of the United States’.” Analogously, in example 8, a. is true for one value of x, b. for all values of
x and c. for no values of x. If the equation is true for the substitution of every number for the unknown, it is an
equivalence. Now, the reader might conclude that we cannot substitute every number for the unknown, so we can
never be sure it is an equivalence. However, for linear equations, after we verify in the next chapter that the graph
is a straight line, it follows from the fact that a straight line is determined by just two points, that we need only
check two values of x. Now, if an equation is not an equivalence, it still may be true for some substitutions of x
(these are called the solutions), or there may be no substitution to make it a true statement.

There are various techniques for solving a linear equation; all techniques amount to applying arithmetic operations
to the equation that do not change the set of solutions. There are three kinds of operations:

1. Apply the laws of algebra to simplify the expressions; in particular, distribute to remove
parentheses and combine like terms.

Transform the equation 2x + 3x = 5 + 20 to the equation 5x = 25. Transform the equation
6(x − 2) = 11 to the equation 6x − 12 = 11.

2. Add or subtract the same expression to both sides of the equation.

Transform 3x = 2 − x to 4x = 2 by adding x to both sides.

3. Multiply or divide both sides of an equation by a nonzero number.

Transform the equation 2x = 8 to x = 4 by dividing both sides of the equation by 2. Transform
3x = 6x − 18 by first dividing by 3 to get x = 2x − 6, and then combine like terms to find x = 6.

These operations all transform any equation into another with the same set of solutions. What is most important
is that they are effective: they succeed in solving any linear equation. Let’s apply these ideas to the equations of
parts a through g of example 8.

Example 8 Solutions.
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a. 2(x + 5) = 3x − 1;

Simplify the left side: 2x + 10 = 3x − 1;

Subtract 2x from both sides: 10 = x − 1;

Add 1 to both sides: 11 = x. Thus there is one solution: x = 11.

b. 2(x + 5) = 2x + 10;

Simplify the left side: 2x + 10 = 2x + 10. Since both sides are the same expression this is true for all
values of x; that is, the expression on both sides of the equals sign in b) are equivalent. Consequently,
every number is a solution to this equation.

c. 7 = 5 this is false: If we think of this as 7 + 0x = 5 + 0x, we can assert that there is no value of x to
make it true.

d. 7x = 5x: Subtract 5x from both sides: 2x = 0. Divide both sides by 2: x = 0, so 0 is the only solution.

e. 3(x − 5) = 2x;

Simplify the left side: 3x − 10 = 2x;

Subtract 2x from both sides: x − 10 = 0;

Add 10 to both sides: x = 10.b Therefore, there is one solution: x = 10.

f. 7 = 5 + 2: combine like terms on the right: 7 = 7. This is a true statement.

g. 7x = 7x + 1: Subtract 7x from both sides: 0 = 1. This is a false statement, so there is no solution to
the original statement: no choice of value for x will make it true..

Let us take a moment to notice the exceptional cases: b, c and g, where we do not get a solution, but either get an
equivalence (all numbers solve the equation) or there is no solution. These occur when the coefficient of x is the
same on both sides of the equation. We see this in b after distributing the 2, and in c and g the equation starts that
way.

There is a geometric representation of this situation that helps make this clear. Suppose that we start with the ex-
pressions 2x+4 and 2(x+3). Let’s graph the two expressions: that is, graph the equations y = 2x+4 and y = 2(x+3).

−3 −2 −1 0 1 2 3

1

2

3

4

5

6

y = 2(x + 3) y = 2x + 4

In general, when we graph two linear expressions, we get two lines, and the
point of intersection gives the value of x for which the two expressions give
the same number. However in this case (see the figure), the lines are parallel,
so there is no point of intersection; explaining why there is no solution. Now,
if we had started out with the expression 2x + 4 = 2(x + 2), then the figure
would have shown just one line, since the two expressions are equivalent.

An important feature of the allowable operations on equations is that they can
be reversed: if an operation takes one equation to another, it can be undone:,
meaning that there is an operation on the second equation that produces the
first.
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Example 10.

Solve −3x + 8 = 20 + x.

Step 1: Subtract x from both sides to get: −4x + 8 = 20.

Step 2: Divide both sides by −4 to get x − 2 = −5.

Step 3: Add 2 from both sides to get x = −3.

Now let’s reverse the process. Start with x = −3.

Step 1: Subtract 2 from both sides to get x − 2 = −5.

Step 2: Multiply both sides by −4 to get −4x + 8 = −20.

Step 3: Add x to both sides to get −3x + 8 = −20 + x.

Summary: To solve any linear equation, use these rules, not necessarily in the order listed. Prac-
tice develops a sense of the sequence that best leads to the solution:

1. Use the distributive law to remove parentheses.

2. Combine like terms so that each side of the equation is of the form ax + b.

3. Add the same expression to both sides of the equation so that x appears on only one side of
the equation.

4. Divide by the nonzero coefficient of x; resulting in an equation of the form x = c.

Example 11.

Students will need to develop a facility for discovering mistakes in the procedure, when, after checking,
it is discovered that the arrived at answer does not solve the original equation. In the following determine
whether or not the following arguments are correct, and if incorrect, explain the error,

a. 2(x + 5) = 13

2x + 5 = 13

2x = 8

x = 4

b. 3x − 15 = 24

3(x − 5) = 24

x − 5 = 24
3

x − 5 = 8

x = 13

c. 2x + 3 = x + 10

2
(
x + 3

2

)
= x + 10

x + 3
2 = x

2 + 10

x
2 = 10 − 3

2

x = 10 − 3 = 7
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Solution.

a. There is a mistake in the first step: the 2 is improperly distributed; the second line should be 2x+10 =

13. Now subtracting 10 from both sides gives 2x = 3 which leads to the answer x = 3 . Now check:

2
(

3
2

+ 5
)

= 2 ×
(

3
2

)
+ 2 × 5 = 3 + 10 = 13

b. This is not so straightforward as the preceding problem, so first we check whether or not the answer
satisfies the first equation: substitute 13 for x to get 3(13) − 15 which is 39 − 15, which simplifies to
24. Since this is the same as the right hand side of the equation, the answer is correct. But that does
not mean that the argument is correct: we have to still check that the step from one line to the next is a
correct application of arithmetic. In this case, it checks out: line one to two is the distributive property;
line two to three: both sides are divided by 3; line three to four, replaces 24/3 by the equivalent number
8 and finally we get to the last line by adding 5 to both sides.

c. First, let’s check that 7 solves the first equation: with this substitution for x, the left hand side is
2(7) + 3 = 17, and the right hand side is 7 + 10 = 17. Now, let’s check that the reasoning is correct.
Well, there is a mistake in going from line two to three: we are dividing both sides by 2, but on the right,
the second term (10) was not divided by two. The next step is correct: we have subtracted x/2 and 3/2
from both sides. However, the step to the last line is faulty: in multiplying both sides by 2, we failed to
multiply the term 10 by 2. This error has the effect of correcting the preceding error, so when we end up
with x = 7, we accidentally ended up with the correct answer even though the steps were flawed.

Section 1.3. Creating and Solving Linear Equations to Model Real World Problems

Solve real world problems with one variable linear equations. 8.EE.7c

Up to this point in this chapter we have been discussing the questions: what does an equation tell us, ”What does
an equation tell us?”, ”What does it mean to solve an equation?”, and ”What is the process for solving linear
equations?” However our students are most unlikely to ever see an equation to solve except in other math classes
that they will take or, possibly, will teach. So why are we teaching this material? The answer is this: they will
have, as professionals, workers, and as human beings living in the 21st Century, many problems to solve on a
daily basis. They will need tools to think through those problems in a way that leads to an acceptable course of
action. If the course of action depends upon the values of specific quantities, it is highly likely that algebra - or
more often, algebraic thinking - will be the tool to apply.

It is coherent and effective algebraic thinking that is the goal of the study that started in sixth grade and continues
through to high school graduation. It is not the protocol, or technique: we have computers and calculators to do
that work. So then, the question again arises: why do we teach the protocol for solving equations? One might just
as well ask: “Why does the plumber have to know his wrenches?”, “Why does the dentist have to understand the
dentist chair?”, “Why does a carpenter have to know what a hammer can and cannot do?”, ”Why do we have to
learn about our car before we can drive it?” The answers are so obvious that these questions hardly ever come up.
But the connection between algebraic thinking and solving of real-life problems is not easily taken for granted,
and one must be able to explain it - the teacher in order to scaffold the teaching, and the student in order to be
motivated to learn.

Although this is the third section on linear equations, it is the most important one: the content here is the rela-
tionship between a problem stated verbally, and its algebraic restatement. This we call mathematical modeling of
a problem. The state of one’s financial resources may suggest that, while shopping, one take into consideration
the relationship between cost and value. This may involve gathering of data (more shopping) and then analysis of
those data. All of these operations involve algebraic thinking.
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Modeling of a problem makes it possible to do calculations and make predictions. For example, we record the
passage of time with clocks and watches, and make calculations based on those observations, conceptually using
the model of a needle moving continuously along the real line in the positive direction. But we should not take
the model too seriously: if we are told that the new record for running a mile is 3 minutes and 37.65 seconds, we
should keep in mind that that is an approximation, as will be any response, no matter how accurate the timepiece.
If in the next race, the same runner runs the mile in 3 minutes and 37.65 seconds according to the chronometer
available, we say that the time is “the same,” but we can neither claim that this is precise, nor that one race was
run faster than the other - unless some other observer had a more precise chronometer.

Students should understand the power they have when they are able to move fluently between the verbal descrip-
tion and symbolic representation of a linear context. What does the symbolic representation allow them to do?
Symbolic representations allow students to show the relationship between the quantities, solve problems, draw
conclusions, make decisions, etc.. Of what must students be careful when they translate to a symbolic represen-
tation? Are they clear in what they have defined their variable to represent in the context? What quantities and
units are involved? Once solved, can they interpret the solution in the context? Often, when students formulate
the algebraic representation and solve it, they struggle to interpret that answer in its context and for confidence
that they have even answered the question(s) being asked.

Being able to figure out how to attack problems as they come up, and what protocols to use to solve them, is the
central goal of education. Students need to know how the protocols work in order to be able to formulate the
problem so that a protocol can be applied. In the following set of problems we concentrate on how to get from a
verbal problem to the equation that represents it.

Example 12.

Here is a game, based on the preceding sections, that might attract the students’ attention to the uses of
algebra. Pick a number from 1 to 20. Add three and double the result. Add 8. Take half of that number.
Subtract your original number. You have a 7, right?

Let us analyze this “trick.” The subject picks a number; since it is a number but we do not know it, we
call it N. Then the subject is asked to perform a set of operations, leading to the following list:

Operation Result
Add 3 : N + 3
Double : 2(N + 3)
Add 8 : 2(N + 3) + 8

Take half : N + 3 + 4
Subtract original number : 3 + 4

So when you, the “magician,” reveal that the number in hand is 7, we see that it is algebra, not magic. If
this trick is played several times, it is a good idea to change the number 8 to another even number 2K.
Then the end result is “revealed” to be 3 + K.

A variant of this that may seem a little more magical is this: at the N + 3 + 4 stage, ask for the number
the subject now has. When this is received, mentally subtract 7 and says: “Your original number was
. . . .”

Example 13.

a. Fred, Jon and Brody pooled their resources for a $150 room at a resort. Jon put in twice as much
as Fred, and Brody put in $10 less than Fred. How much did each put in?

In this problem we are asked for the amount each put in the pool. In order to pick the “unknown,” it
may be necessary to read the problem more carefully. The statements all relate the unknowns to Fred’s
contribution, so we should select that as the primary unknown; let’s call it F. Now James put in twice
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as much as Fred, so he put in twice F; that is, his contribution is 2F. Brody put in $10 less than Fred,
so his contribution is F − 10. The sum of these numbers is $150, and this becomes the equation:

F + 2F + (F − 10) = 150 .

We now assign this to our assistant, an expert on the preceding two sections of this chapter, who comes
up with the answer : F = 40, so Fred put in $40, Jon put in $80, and Brody put in $30.

Here is a slightly more complicated variant:

b. Fred, Jon and Brody pooled their resources for a $150 room at a resort. Jon put in twice as much
as Fred, and Brody put in $10 less than Jon. How much did each put in?

We are still looking for three numbers, but it is no longer true that the other two are directly related to
Fred’s contribution. But Brody’s is related to Jon’s, and Jon’s is related to Fred, so it still all comes
down to Fred. Again, if we denote Fred’s contribution as F, then that of Jon is 2F. Now Brody put in
$10 less than Jon’s, which is 2F, so Brody’s contribution is 2F − 10. Now add them up to get $150:
F + 2F + 2F − 10 = 150, leading to the result F = 32.

This problem illustrates several possible sources of confusion, centering around the interpretations of
statements like “A is four less than B” and “A is twice B.” As for the first, it is a problem of the language:
there is a significant difference between the statements “A less four is B,” and “A is four less than B”
The students may have trouble with the linguistic difference; this can be resolved by testing with real
numbers: take A = 5 and B = 1. Now, which is true: “5 less 4 is equal to 1” or is “5 is 4 less than 1”?
The equation expressing the first statement is “5-4=1,” which is true, and for the second we get “5=1-4,”
which is false. In the same way, we test the second statement: A is twice B. Take A = 4 and B = 8, put
them in the statement, and pick the version that is true.

Example 14.

A salesman at the XYZ car dealership receives a salary of $1,000 per month and an additional $250 for
each car sold. How many cars should he sell each month so as to earn $8,000 in a month?

Solution. The way to the solution is to find out the relationship between income and number of cars
sold. Test some numbers: If no cars are sold, the salary is just the base $1000; if one care is sold, the
earnings are $1250. Look at some more test cases to discover the pattern:

a. if this salesman sells 4 cars, his income for that month is: 1000 + 4(250);

b. if this salesman sells 12 cars, his income for that month is: 1000 + 12(250);

c. if this salesman sells N cars, his income for that month is: 1000 + N(250).

The last expression simply amounts to recognizing that the computation for 4 or 12 or “no matter how
many” cars sold is the same.

In this problem we want the income to be $8,000, so we look at c., set it equal to 8000 and hand it over
to our algebra assistant for the solution.

Example 15.

Lucinda is on the school track team; she can run 8 miles in an hour. Her younger sister Josefa isn’t yet
a runner, but can walk at a pace of 3 miles an hour. Josefa left their home forty minutes ago heading
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toward downtown, and Lucinda wants to catch up with her. If she runs how long will it take to catch
Josefa? How far will they be from home?

Solution. First, we focus on the first unknown that we have to determine: in this problem it is the
time Lucinda needs to catch Josefa; let’s call that T , in hours. In that time Josefa has walked 3T miles
and Lucinda will have run 8T miles. So, after T hours, Lucinda is 8T miles from home; but since Josefa
was already 2 miles down the road when Lucinda started, Josefa is 3T + 2 miles from home. When they
actually meet these two distances have to be the same, giving us the equation

8T = 3T + 2

The solution of this equation is T = (2/5). Now, it is important to recall what this means: what was
T and what are the units for 2/5? As soon as the algebra takes over, meaning of the symbols becomes
irrelevant, but when we’ve solved the algebraic equation we must return to the meaning of the symbol
to fully understand what we have discovered: T is 2/5 of an hour, or 24 min utes. . It takes energy, once
the “math” is done, to return to focus to the problem. But when we do, we see there is another part of
the problem: How far away have they gone. Well, Lucinda ran for 2/5 of an hour and she runs at 8 miles
per hour, so she ran (2/5)8 miles, which is five and a third miles.

Example 16.

My new hybrid car can get 35 miles to the gallon. Gas costs $3.25 per gallon. San Francisco is 825
miles from here. How much will I spend on gas to drive to San Francisco?

Solution. Let C be the cost of driving there. We have to relate C to miles, denoted by M, and the
information we are given is how C relates to gallons, denoted by G, of gas: C = 3.25G and how miles
relate to gas: M = 35G. This tells us that G = M/35, and so we can substitute that in the first equation
to get C = 3.25(M/35), or C = 0.093M. Since we want to go 825 miles, the cost of gasoline will be
C = 3.25(825) = 0.093(825) = 76.725 , or $76.73.

The preceding example is, in part, an example of a literal problem: one in which several quantities are related and
we want to express that relationship by a formula. So, in that example, we want to express the cost of gasoline (C)
in terms of miles (M), already knowing the cost of gasoline per gallon and the number of miles per gallon; and we
ended up with the relation C = 0.093M, or 9.3 cents per mile.

Here is another literal problem:

Example 17.

Let’s return to example 14, of the salesman at the XYZ dealership. We saw (see part c)) that if the
salesman sells N cars in a month, then his compensation is 1000 + 250N. The salesman may ask: how
many cars do I have to sell to have an income of C in a given month?

Solution. The relationship between compensation (C) and number of cars sold (N) is C = 1000 +

250N. The salesman wants to know what N should be to attain a certain value C, so he wants a formula
that calculates N, given a value of C. These are the steps:

C = 1000 + 250N : this is the starting relationship.

C − 1000 = 250N , subtract 1000 from both sides.

C − 1000
250

= N, divide both sides by 250.

This is the formula to calculate the number of cars to be sold to earn C dollars. So, for example, if the
salesman wants to earn $25,000 in a particular month, he must sell N = (25000−10000)/250 = 96 cars.
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To summarize: here is a procedure for solving problems:

1. Read the problem carefully, making sure to identify the unknown(s).

2. Recognize the information in the problem that can be translated into mathematical expres-
sions or equations.

3. Apply the rules for solving linear equations.

Example 18.

The conditions of John’s job are that he can work whenever he wants to, but in any day he works, he
receives no compensation for the first three hours of work, and $20 per hour for each subsequent hour.
On one particular day he wants to buy a special shirt for $190. He has $70 in his pocket. How many
hours must he work on that day to be able to buy the shirt?

Solution.

1. What we want to find is the number of hours to work so that the income, together with the $70 he
starts with comes to $190. Let N be the unknown: the number of hours he has to work.

2. For N hours of work, he receives no income for the first three hours, and $20 for each subsequent
hour. Thus he receives $20 for each of N − 3 hours.

3. After N hours of work he has earned 20(N − 3). That added to the $70 he started with is to provide
the $190 needed to buy the shirt. Thus N must satisfy

20(N − 3) + 70 = 190.

Our assistant plugs and chugs and finds that N = 9. John must work 9 hours in order to have enough
money to buy the special shirt.
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Chapter 2
Exploring Linear Relations

In the preceding chapter we completed the topic of finding solutions of a linear equation in one unknown. In
chapter four we will turn to this study of techniques to find solutions for a pair of linear equations in two unknowns.
But now we want to turn to another thread started in previous grades, that of representing and understanding linear
relations in two variables. Notice the change in language: from equation and unknown to relation and variable.
This is a significant change in objective: from that of finding specific numbers that satisfy given conditons, to that
of understanding how conditions on the relation of two variables determine how they behave with respect to one
another. In seventh grade students studied the properties of a proportional relation between two variables; in this
chapter we turn to linear relations between two variables. A significant tool is the graphical representation of a
linear relation by a straight line, leading to the correspondence between rate of change (for the relation) and slope
(of the line).

There are two ways to bring together the study of proportional relations and the solution of linear equations in
order to understand linear relations, one emphasizing geometric aspects and the other emphasizing the algebra.
Algebraically, linear relations are generalizations of proportional representations: we replace the equation y = mx
by the equation y = mx + b. The commonality between these is that the rate of change of y with respect to x is a
constant; the difference is that for a proportional relation, the quotient y/x is constant, and is called the unit rate
of y with respect to x. For a linear relation, the quotient y/x is not constant unless b = 0 Here, b is considered the
initial value of y; that is, the value of y corresponding to x = 0. Geometrically, linear relations and proportional
relations are both represented by straight lines; the difference is that the graph of a proportional relation goes
through the origin, while the graph of a linear relation goes through the point (0, b), called the y-intercept. So, a
proportional relation is a special case of a linear relation. In particular, if we slide the graph of y = mx + b by
the amount b, we get a line through the origin, and thus the graph of a proportional relation. This just realizes
the fact that in the linear relation y = mx + b, the quantities y − b and x are proportional, with m the constant of
proportionality.

The facts that there are these two ways of developing the subject of linear relations, that both approaches are im-
portant, and that the differences are subtle, create a learning issue: the student has to assimilate the two approaches
at the same time and appreciate the subtle differences between them. Our solution is to present both approaches,
the geometric in the workbook and the algebraic in the foundation. This directly exposes the two approaches and
gives the teacher the freedom, and obligation, to develop them simultaneously in a way that works best in that
classroom.

Here we begin by continuing the study of proportional relations from seventh grade, focusing on the unit rate as
a rate of change of one quantity with respect to the other. There will be a shift in language as we move from
calculating values of quantities in a proportional relation, to the study of the relation itself. For example, we now
consider the unit rate as the constant of proportionality of the relationship in order to emphasize that it is what
remains constant while the measure of the quantities vary, and therefore are called variables. We observe that the
graph of y vs. x, when y and x are in a proportional relation, is a straight line through the origin.

Then, we return to the study of linear expressions, but this time in the form of the function y = mx + b (although
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we do not introduce the word “function” until chapter 3). We observe that the graph of y vs. x is a straight line that
crosses the y-axis at the point (0, b). By examination of tables of values and the graph, we observe that, although
the variables are not proportional, their changes from one measurement to another are proportional; that is, the
quotient of the change in y values with respect to the x values is constant (independent of the points chosen for the
computation). This is called the rate of change. The constancy of the rate of change along the graph is a defining
property of a straight line, as we shall see in section 3. The move from proportional relations to linear relations,
and the accompanying shift from unit rate to rate of change is subtle and may be difficult for students to appreciate
at this time. For this reason, we feel that it is essential to develop the subject in contextual examples, moving the
the algebraic formulation in the next chapter.

Although we have observed that the graph of a linear relation is (to be precise, appears to be, since we can only
plot a finite number of values) a straight line, we still need to understand why this is so. In addition, we need to
understand why a straight line is the graph of a linear relation. For this, we seek an algebraic characterization of a
straight line, and to get there we have to begin with geometric ideas. Here we introduce dilations: transformations
of the figures in the plane that retain “shape” but not “size.” These properties will be examined in detail in chapter
9; for the present purpose it suffices to observe that a dilation takes a right triangle with horizontal and vertical
legs to another such triangle, and that the lengths of the corresponding sides of the triangles are proportional.

If we draw a line in the plane (that is neither horizontal, nor vertical) and then pick two points on the line, the
segment of the line between those two points is the hypotenuse of a right triangle with vertical and horizontal legs.
This we call the slope triangle for that segment. If we now draw the slope triangle for another pair of points, we
can exhibit a dilation that takes one triangle to the other. The fundamental property of dilation is this: the length
of line segments and the length of the images are proportional, with constant of proportionality the factor of the
dilation. We conclude from this that the slope of any slope triangle on a given line is constant. In other words, the
slope of a segment on the line is constant, and this is called the slope of a line. The logic of going from showing
that any two computations give the same slope to the statement that slope is constant along the line is a bit subtle,
and it might be a good idea to create other examples of that logic.

This leads directly to a way to calculate the equation of a line, which is the algebraic expression of the relation
between the variables y and x graphically expressed by saying that they lie on a line. The outcome, which will be
explored in detail in the next chapter is this: for a line L and two points P and Q on L, construct the slope triangle
whose hypotenuse is the segment PQ. Let m be the slope of that segment. Now, let (0, b) be the point on the y-axis
that lies on the line. Then the equation of the line is y = mx + b.

Figure 1 illustrates the geometry in this discussion. We show the cases for both positive and negative slope, to
emphasize that slope is not the ratio of the lengths of the sides of the slope triangle, but the ratio of the changes
in the variables. Thus, when the change in y is negative for the corresponding increase in x, then the slope will be
negative.

(0, b)

Slope Triangle, m > 0

(0, b)

Slope Triangle, m < 0

Figure 1
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2.1 Linear Patterns and Contexts

Proportional Relationships

Graph proportional relations, interpreting unit rate as the slope of the graph, which is a straight line. 8.EE.5.1

Compare two proportional relationships represented in different ways (tables, graphs, equations). 8.EE.5.2

The ideas of ratio and proportion were introduced in grade 6 and further developed in grade 7. In this section, after
a brief review of the development of these ideas, we move on to the relation “proportional” (from the focus on the
values of variables “in proportion.” This complements the gradual move away from the language of “unknowns”
and “equations” to that of “variables” and “relations.”

In grade 6 the concept of ratio is introduced as a way of describing a relation between two collections of objects
without reference to the actual size of those collections. So we may say that, in U.S. population, the ratio of minors
to adults is 2:5, meaning that there are 5 adults for every two minors. This knowledge tells us, for example, that if
we collect together a random group of people of size 140, we should expect 40 of them to be minors.

An old joke says that a shepherd keeps track of the herd by counting the legs and then dividing by 4. In terms of
ratios, this expresses the fact that the ratio of sheep to sheep legs is 1:4. Actually, in Utah and Nevada where there
are sheep herds numbering in the thousands, the shepherd keeps track of the herd by counting the black sheep and
then multiplying by 40. This works for two reasons. First, sheep are social animals congregating in groups, so a
count of sheep that estimates the actual number of the sheep within the size of a group has not missed any groups
of sheep (maybe a stray lamb or two, but then the mother ewe will notify the shepherd of her distress). Second is
that the ratio of sheep to black sheep is, for reasons of genetics, 40:1.

The concept of ratio (used mostly in counting individuals in particular sets) leads to the concept of proportion,
which is more convenient than ratio for quantities in question can take on all numerical values, not just integral
values.

• Given two quantities x and y, they are said to be proportional if, whenever we multiply one by a factor r,
the other is multiplied by the same factor, r. For example, if we double the variable x , then y also doubles.

If two quantities are measuring the same physical attribute, they are going to be proportional. When we measure
the length of a rod, we may do so in yards (Y), or in feet (F). Since these are measures of the same physical
characteristic, they have to be proportional: if the rod triples in size, then its measure in feet or in yards also triples
in size. A yard is defined as being 3 feet long, so we say that the ratio of yards to feet is 1:3. This can be rephrased
as a proportional relationship with the unit rate: 3 feet per yard.

• If quantities y and x are in proportion then the unit rate of y with respect to x is the amount of y that
corresponds to one unit of x. If m is the unit rate, then for any value of x, the corresponding y value is mx.
If we interchange the roles of y and x, we would speak of the unit rate of y with respect to x . These two
numbers are inverses of each other.

Since the unit rate of feet to yards is 3, the unit rate of yards to feet is 1/3.

Example 1.

There are 5280 feet in a mile. How many yards are in a mile?

Solution. 1 mile = 5280 feet ×
1 yard
3 feet

=
5280

3
yards = 1760 yards.
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In seventh grade, the unit rate is reinterpreted as the constant of proportionality. This corresponds to the change
of focus from specific instances of a proportional relationship to that of the relationship itself. This leads to
the equation y = mx, where y and x are the quantities in the proportional relation, and m is the constancy of
proportionality. When two variables are proportional, all we need to know is one specific pair of values (x0, y0) in
the relation to be able to compute all such pairs of values, for the ratio y0/x0 gives us the value of m. Graphically
this is clear: if we know a pair of values (x0, y0) in the relation, all pairs (x, y) in the relation lie on the line joining
(0, 0) to (x0, y0). So all we need to do is to draw the line joining the origin to the given point, (x0, y0).

Example 2.

The concepts of ratio, constant of proportionality and unit rate seem interchangeable, since they can
all be represented by the same fraction, and this causes a lot of confusion with students. The way to
address this confusion is to first understand that they are interchangeable, and are used in different ways
in different contexts. So the second step in addressing this issue is to understand that the fundamental
difference among these concepts is that they present different ways of looking at a problem in context,
and that one has to learn how to decide which interpretation is relevant for a given context. Let us illus-
trate.

In basketball, it is necessary to have 12 players in a roster. In a particular district in Eastern Utah, the
middle school basketball league has teams that are made up of boys and girls. For fairness, it is decided
that each team must have 7 girls and 5 boys. This tells us that the ratio of girls to boys in the basketball
league is 7:5. The relation, girls to boys in the basketball league is a proportional relationship, with
constant of proportionality “girls to boys” equal to 7/5.

Question 1. The district decides to have 8 teams in the league. How many girls and boys are there in the
competition? This problem guides us to think in terms of the ratio 7:5: since there are 8 teams, each of
which has 7 girls and 5 boys, the total number of players are 8 × 7 = 56 girls, and 8 × 5 = 35 boys.

Question 2. There are 45 boys eligible for basketball. How many girls are needed to to complete the
league? Here we want to think in terms of the constant of proportionality, which is 7/5. So the number
of girls needed is 7/5 of the number of boys available; that is, (7/5) × 45 = 7 × 9 = 63.

Here is a different problem: my grandfather drives at exactly 30 miles per hour.

Question 1. If Gramps drives 5 hours, how far does he go? Here, we think of unit rate: the rate of miles
per hour is 30. Since

miles =
miles
hours

× hours ,

he traveled 30 × 5 = 150 miles. Question 2: Gramps wants to drive to St. George from Logan; that is
440 miles. How long will it take him at that rate. Here we want to convert to minutes, and the concept of
ratio: the ration of minutes to miles is 2:1. So to drive 440 miles, takes Gramps 880 minutes, or 880/60
= 14. 6667, or 14 hours and 40 minutes.

Example 3.

To illustrate the development of a proportional relationship, consider measuring the amount of water in
a cylindrical container (a glass or can). If we put a quantity of of water in the cylinder, we record the
height of the column of water, H, and the weight W of the column of water. Both of these are measures
of the amount of water: if we double the amount of water, both the height and the weight double.

Suppose that this experiment is done with a quantity of water, filling the cylinder a bit at a time, and
each time, measuring both H and W. A table of the data would look something like this:
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Height 0 2 3 4 6 8 inches
Weight of Container 2.5 2.5 2.5 2.5 2.5 2.5 ounces
Measured Weight 2.5 27.3 39.7 52.1 76.9 101.7 ounces
Weight of Water 0 24.8 37.2 49.6 74.4 99.2 ounces

Notice that, we have accounted for the weight of the container itself by first measuring it empty, and then
subtracting that weight from the weight of the container and water at each measurement. We now graph
the these data, plotting height along the horizontal axis and weight on the vertical: The graph appears
to be a straight line, giving confirmation of our hypothesis that the height of the column of water and its
weight are proportional. We can calculate the unit rate of change using any one of the measurements:
for example, 4 inches of the water weighs 49.6 ounces, so we have 12.4 ounces per inch of water. This
is expressed by the relation W = 12.4H. In an actual experiment there always will be slight variations
due errors or estimation, given the accuracy of the instruments used. So, the rates computed from each
measurement may differ slightly. We will return to this in the statistics chapter.
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Graph of Example 2 Data

In summary, the height of the column of water in the container and its weight are two different ways
of measuring the volume of the column of water. Since the volume of the water is the same no matter
how it is measured, the measurements are related. Similarly, yards, feet, inches and meters are different
ways of measuring lengths; ounces, pounds, grams are different ways of measuring weight. All these
relations have the property that a doubling or halving of the object (volume of water or length of stick)
has the effect of doubling or halving the measure. In fact if the amount of the object is changed by the
factor a, then any measure of the object also changes by the factor a. When quantities are related in this
way, we say that they are proportional.

Example 4.

If we are told that x and y are in the relationship y = 7x, then (1,7) , (2.5, 16.5), (8,56) are all in this
relationship, because the ratio of the y value to the x value is always 7.

Example 5.

There are 5280 feet in a mile, so Feet/Miles = 5280, or Feet = 5280×Miles. To find out how many feet
are in a quarter mile, let f represent that number of feet. Then we have f = 5280(1/4) = 1320 feet. In
yards, that is 1320/3 = 440 yards.
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Example 6.

We have made measurements of two quantities, and formed this table:

x 0 2 4 5 7 8 10
y 0 3.6 7.2 9 12.6 14.4 18

The graph of these data appears to be a straight line through the origin suggesting a proportional rela-
tionship: Notice that whenever the value of x doubles, so does the value of y, and that a change in x of
1 unit is accompanied by a change in y of 1.8 units. Finally, when we calculate the quotient y/x for any
pair of points, we always get the value 1.8. This can be phrased this way: the proportional relationship
y = 1.8x models the given data.

• If quantities y and x are in proportion then the graph of pairs (x, y) in this relation will be a straight line
through the origin. That line is characterized by the assertion that y/x is constant, and in fact, is the constant
of proportionality. In terms of the graph, we call this its slope.

Linear relationships

Construct a function to model a linear relationship between two quantities. 8.F.4

In chapter 1 we concentrated on solving linear equations of the form y = linear expression, where y is either a
number or another linear expression. We also compared two linear expressions by graphing them (see the figure
on page 6 of chapter 1)), and found that the graph of each linear expression is a line. In this chapter our goal is
to see why there is this correspondence between linear expressions and lines. Let’s start by taking another look at
example 13 of Chapter 1.

Example 7.

A salesman at the XYZ car dealership receives a base salary of $1000/month and an additional $250 for
each car sold. How many cars should he sell each month so as to earn a specified amount each month?
There we ended up with this formula: C = 1000 + 250N, where N is the number of cars sold in a month,
and C is the compensation received. Let’s make a table for some possible values of N and then graph
the result:

N 0 4 8 12 16 20
C 1000 2000 3000 4000 5000 6000
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The graph (see the figure above) is a straight line that does not go through the origin: even if the salesman
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sells no cars, he receives the base salary of $1000. Also note that to each increment of 4 cars sold, the
salesman receives an increase of $1000. In particular we can say that the increase in income is to the
increase of number of sales as 1000:4 giving us a unit rate of $250 in compensation per unit of cars
sold. This is just the coefficient of N in the equation C = 1000 + 250N. To restate this: the number 250
expresses a relation between the variables N and C, even though the variables are not proportional. It is
the change in C that is proportional to the change in N at the ratio 250:1.

Let’s look at a few more examples to emphasize this point and to see how students should be able to extend this
idea.

Example 8.

At the statewide championship game, each player on each team receives five complimentary tickets, and
can buy additional tickets at $20 each. Carlos wants 8 tickets and Louis wants 16 tickets. How much
does each pay for the full set of tickets?

Solution. One might to say that, since Louis is getting twice as many tickets, he has to pay twice
as much. But that would be a mistake, the cost is not proportional to the number of tickets, but cost is
proportional to the number of tickets in excess of 5 . In this situation, they each get 5 complimentary
tickets, so Carlos pays for 3 tickets and Louis pays for 11 tickets. At $20 apiece, Carlos pays $60 and
Louis pays $220.

By applying this thinking to the general case, we can write down a formula for the cost C of N tickets
for any player. If a player wants N tickets, he gets 5 free and pays $20 each for the remaining tickets.
There are N − 5 remaining, so the cost is C = 20(N − 5) or C = 20N − 100. The form of these equations
tell different things, both interesting. The first ( C = 20(N − 5) ) tells us that the cost is proportional to
the excess of tickets above the first 5. The second tells us that the cost is $20 per ticket, less $100 for the
free 5 tickets. Note that these equations make sense only for N ≥ 5; players don’t get refunded if they
have less than 5 friends. In figure 2 we have graphed this relationship:
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For any table where rate of change of one variable with respect to the other is not constant, the graph of these data
will not be a straight line. Students will begin to explore these types of relationships more in Secondary 1. In 8th
grade students simply need to recognize if a relationship is linear or not.

Example 9.

I have a 120 gallon steel drum full of water to keep my garden thriving through a long dry spell. Each
day I use four and a half gallons watering my plants. How much water do I have in the drum after 10
consecutive dry days? After d consecutive dry days? How long can I last without rain or refilling my
drum?

Solution. If I use 4.5 gallons of water each day, in 10 days, I use 4.5(10) = 45 gallons of water,
so there are 75 gallons of water still in the drum. After d days there are still 120 − 4.5d gallons in
the drum. Using the symbol w to indicate the amount of water in the drum, this gives me the relation
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w = 120 − 4.5d. Figure 3 is the graph of that relation.
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Notice that this time the line is pointing downward, that is because the amount of water in the drum
decreases as the number of days increases. If we calculate (change in w)/(change in d ) for any two
points on the graph the result will be −4.5, indicating that each day we have 4.5 gallons less in the drum.
It is important to note that language plays a role here: The word less accounts for the negative sign: it
would be wrong to say that “each day we have -4.5 gallons less in the drum.” What is correct is “the
ratio of change in water to the change in day is -4.5 gallons to 1 day.”

Example 10.

Consider the image in Figure 4:
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Figure 4

There is a pattern here: each time we move to the right by one unit, the height of the stack increases by
2. We have labeled the axes in figure 4 with x representing the number of moves to the right, and y the
height of the stack. So, the first stack has the value 0, indicating that there are no moves to the right yet,
and the last stack is 4 moves to the right. The height of the stack starts at 3, and with each move to the
right, increases by 2. This tells us that the algebraic relationship is y = 3 + 2x.

Example 11.

The Timpanooke trail (see the image) is a 7 mile trail from the foot of Mt. Timpanogos (at 7200 feet) to
the peak (at 11900 feet). The trail has three different segments: the first is a three and a half mile horse
trail with a steady altitude gain; the second is a two and a half mile traverse across a nearly level basin,
and the last is a one mile steep climb to the peak. The accompanying table shows the altitudes at each
of these transition points, and the time it takes an average hiker to cover each leg. Make two graphs;
on both the horizontal axis is “miles” and on one, put “altitude” on the vertical axis, and on the other,
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“hours.” Calculate, for each leg of the trek, the rate of change of altitude with respect to miles, and of
hours with respect to miles. Compare and contrast the two graphical representations. Can you explain
the similarities in the two graphs? This activity, of looking for similarities and differences among graphs
will be studied in depth in Secondary 1.

http://farm3.static.flickr.com/2659/3692964206 215e54c7d7.jpg

Timpanooke Trail
Altitude 7200 8700 10,700 11,900
Miles 0 3.5 6 7
Hours 0 2 3.5 5

In the above examples of linear relations, we have seen from the tables of values that the rate of change in y with
respect to x is constant. That constant is positive if the graph points upwards as we move from left to right, and
negative if the graph points downward. If the graph is horizontal, there is no change in y, so the rate of change is
0. It seems to always turn out that the graph of a linear relation is a straight line, but this is something we cannot
yet explain. It is important to always keep in mind that the subject of mathematics - indeed every science - is not
to just record observations, but to study them enough to be able to explain them. That is the only way that the
working scientist can make progress, be it in mathematics, medicine or space travel. In classroom discussions,
it is important, where relevant, to be precise about observation vs understanding. Here we’re observing that the
relationship is linear, we have not proven this fact.

So, what is the property of a line that guarantees that it will be described by a relation of the form y = mx + b?
What we know about a line is that it is determined by two points: place a straight edge against the two points and
draw the line. A line is also determined by a point and a direction: lay the straightedge against the point, and set it
in the intended direction and now draw the line. To relate these to a condition on linear relations, we need to find
an algebraic way of expressing this geometric, constructive criterion. This is done with the concept of slope of a
line and its relation to rate of change.

Section 2.2. Slope of a Line

Describe the effect of dilations ... on two dimensional figures using coordinates. 8.G.3: that the image of a line is
a line parallel to it; that, under a dilation a line segment goes to a line segment whose length is the length of the
original segment multiplied by the factor.

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line
in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for

8MF2-9 ©2014 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.



a line intercepting the vertical axis at b. 8.EE.6.

In order to respond to this last standard in the way it is stated, a chapter on transformational geometry up to
similarity would have to precede this chapter. We felt that it is important in eighth grade to begin the year by
completing the set of ideas around linearity, and that an initial chapter on geometry would be a diversion from
this main point of 8th grade mathematics. Since all that is needed to understand the main fact about slope are the
two properties of dilations cited above, we decided to minimize the geometry to these facts, and then return to the
relation of the rate of change of a linear function and the slope of the graph of that function: they are the same.
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Figure 5

Dilations are connected to scaling, so it could be useful to
recall at this time that discussion in 7th grade.

A dilation is given by a point C, the center of the dilation,
and a positive number r, the factor of the dilation. The dila-
tion with center C and factor r moves each point P to a point
P′ on the ray CP so that the ratio of the length of image to
the length of original is r: |CP′|/|CP| = r.

Figure 5 illustrates a dilation. In the figure, the center of the
dilation is C, and its factor is r. We have exhibited 3 original
points, P, Q, R and their images under the dilation P′, Q′, R.
The letters a, b, c are the distances of P, Q, R from C.

Example 12.

In figure 6 we illustrate the effect of a dilation with center C = (0, 0), and factor r = 2.5 on a triangle in
the first quadrant of a coordinate plane.
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Figure 6

Observe the connection of this image with those in the 7th grade discussion of scale drawings. Note
also that a point (x, 0) is moved to the point (2.5x, 0), and a point (0, y) is moved to (0, 2.5y). In fact, any
point (x, y) is moved out to the point on the lines through the origin and that point whose distance from
the origin is 2.5 times that of (x, y). That the coordinates of this point is (2.5x, 2.5y) is easily observed,
and gives the coordinate description of a dilation with center the origin. However, the understanding of
why this is true needs the Pythagorean theorem, to which we will return in chapter 10. For now, students
should work many examples of this type to conclude that

• In a coordinate plane, the dilation with center the origin and factor r is given by the coordinate
rule (x, y)→ (rx, ry).
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Being able to express a transformation of the plane in terms of coordinates provides an algebraic tool to help
work with conceptual understanding of dilations, but it is not as important at this stage as being able to under-
stand the properties of dilations. Students should play with the concept sufficiently to accept these properties as
intellectually plausible:

Properties of the dilation with center C and factor r:

a. If P is moved to P′, then |CP′|/|CP| = r. That is, the distance of P′ from C is r times the
distance of P from C

b. If P is moved to P′ and Q is moved to Q′, then |Q′P′|/|QP| = r. That is, under a dilation, the
length of any line segment is multiplied by the factor of the dilation.

c. The dilation takes parallel lines to parallel lines.

d. A line and its image are parallel.

The first is part of the definition of a dilation. The second, that every length, not just those on lines through the
center, is multiplied by the factor of the dilation, can be confirmed in examples - enough so that students accept
this conclusion. The last two about parallelism are central properties of dilations. They are easy to observe through
examples, and they are intuitively plausible. They follow from the fact that parallel lines do not intersect. As for
c: if two lines do not intersect before the dilation, their images cannot intersect; this would imply that the dilation
takes two different points to the same point; this is not possible. And for d, if a line and its image intersect, that
point of intersection was not moved by the dilation. Unless r = 1, the only point not moved by the dilation is
the center. In chapter 9 we will return to this subject and see that property b is a consequence of the other three
properties in this statement.

In the preceding section we observed that the graph of a proportional relation is a straight line through the origin,
we now turn to understanding why this statement and its converse is true. The key here is the above set of
properties of dilations. Let’s start with the statements that we want to understand:

• A non-vertical straight line through the origin is the graph of a proportional relation y = mx.

• The graph of the proportional relation y = mx is a non-vertical straight line through the origin.
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P′ Q′

m

y

1
x

figure 7

We start with the first statement, and then show that it implies the second.
In figure 7 we have drawn a typical line L through the origin. P is the point
whose first coordinate is 1 and whose second coordinate is m. Q is any other
point on the line with coordinates (x, y). We introduce the dilation with center
the origin that takes the point P′ to Q′. Since the length 1 goes to the length x,
the factor of the dilation is x. Now, the dilation takes the vertical line PP′ to a
parallel, and therefore also vertical line through Q′. That line has to intersect
L at Q, since the line L is not changed in the dilation. Now, the dilation
multiplies the length of PP′ by x, so the length of QQ′ is mx. But that is y,
so we can conclude that y = mx. Since Q was any other point on L, we have
shown that L is the graph of the proportional relationship y = mx.

As for the converse, we start with a proportional relationship y = mx. Draw
the line through the origin and the point (1,m). By the argument above, this
line is the graph of the proportional relationship y = mx.

Now, we shall mimic this construction for the general non-vertical straight line. This less to we have similar
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statements, with “proportional” replaced by “linear,” and “unit rate” replaced by “rate of change.” The statements
we want to discuss are:

• A non-vertical straight line is the graph of a linear relation y = mx + b.

• The graph of the linear relation y = mx + b is a non-vertical straight line through the point (0, b) (called the
y-intercept).

To see why these are true, start with a linear relation y = mx + b. Of course, when b = 0, the graph goes through
the origin and is a proportional relationship, so, by the above argument the graph is a straight line. Now we could
argue as follows: Given the equation y = mx + b, first look at the graph of the proportional relation y = mx. We
now know that that is a straight line L. If we shift that graph in the vertical direction a distance of b units, we
still have a straight line L′. We also know that if (x, y) are the coordinates of a point on L′, then (x, y − b) are the
coordinates of a point on L. So we must have y − b = mx; that is: this equation is satisfied by the coordinates of
any point on L′. But this is the same as y = mx + b, so L′ has to be the graph of the linear relation y = mx + b.

For the converse, start with a non-vertical line L. Since it is non-vertical it intersects the y-axis in a point (0, b).
If we shift this point to the origin, we get a new line L′ through the origin which is, therefore, the graph of a
proportional relationship y = mx. But if (x, y) is on L, (x, y − b) is on L′ and so we again have y − b = mx as a
relation defining the line L, or what is the same y = mx + b.
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Figure 8

−4 −3 −2 −1 0 1 2 3 4 5
0
1
2
3
4
5
6
7
8

Figure 9

This argument gives a geometric meaning to the number b: it is the y-
coordinate of the point of intersection of the line with the y-axis (the y-
intercept). But what is the geometric meaning of the number m?

Let us start again with a non-vertical straight line in the coordinate plane, that
doesn’t go through the origin, but through some point (0, b) on the y-axis. We
know that two points on a line determine the line: just put a straight edge
against both points, and draw the pencil along the straightedge. We now want
to see how to describe this in terms of coordinates: how do the coordinates
of two points on a line determine the relation between the coordinates of any
point on the line? This is where slope comes in.

Given two points in the coordinate plane, P and Q, we define the rise to be
the difference of the y values from P to Q, and the run to be the difference
in the x values from P to Q. The slope of the line segment is the quotient of
these two differences:

slope =
rise
run

If P has the coordinates (x0, y0) and Q has the coordinates (x1, y1) this is

slope =
y1 − y0

x1 − x0

Geometrically, if we draw the triangle with hypotenuse the line segment from
P to Q and legs horizontal and vertical - this is the slope triangle - the slope
is the signed quotient of the length of the vertical leg by the length of the
horizontal leg. By signed, we mean that the slope is positive if the line points
upward as we go to the right, and negative if the line points downward. (see
figures 8 and 9).

Note that in the slope computation the differences have to be taken in the same order: if we subtract the y value of
P from that of Q, we must subtract the x value of P from that of Q. However, if we interchange the points P and
Q, we get the same number. For a vertical line, the denominator in the quotient is zero, so the slope is not defined.
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For a horizontal line, the numerator is zero, so, the slope is zero. Since the
equation of a horizontal line is of the form y = b, this corresponds to the fact
that y does not change as we move along the line. What we want to show is
this: for a line L, this slope calculation is the same for any two points P and
Q on L and is called the slope of the line.

Let L be a non-vertical line, P ,Q and P′, Q′ two different pairs of points on
the line, and T and T ′ the right triangles whose hypotenuses are the given
line segments, and whose legs are horizontal and vertical. Label the vertices
at the right angles as V and V ′ (see figure 10). These two triangles appear
to be related by a dilation; we want to show that they are. First, if there is a
dilation that takes T to T ′, it must be the case that P goes to P′, so the line
L is a line through the center of the dilation. Also, V goes to V ′, so, by the
same reasoning V and V ′ also lie on a line through the center of the dilation.
Let L′ be the line through V and V ′. The point of intersection C of L and L′

has to be the center of the dilation (figure 11), and its factor r has to be the
ratio of the length of CP′ to that of CP. Let’s verify that this dilation does
take T to T ′. First of all, it takes P to P′, since that is how r was chosen.
Since the dilation preserves “horizontal,” and preserves the line L′, it takes
the segment PV to P′V ′, and so the ratio of those lengths is also r. Since
the dilation preserves “vertical,” and preserves the line L, it takes the segment
QV to Q′V ′, so the ratio of those lengths is also r. Thus, in moving from T
to T ′, the length of every side is multiplied by the same factor r, so when we
calculate the rise/run, the r’s cancel, and the quotient is the same for both
triangles.

There is one case not covered: the lines L and L′ may not intersect; that is,
the are parallel. In this case, (see Figure 12) under the shift of P to P′, the
triangle T slides along these tracks to T ′ without changing the lengths of the
sides.

Section 2.3. The Equation y = mx + b.

To wrap up this chapter, we bring together all the preceding material, not simply to summarize it, but also to lead
in to the next chapter, a study of linear functions and lines, the purpose of which is to develop flexibility in moving
among the representations of linear relations.

• For a line L, for any two points P, Q on the line, the quotient

rise
run

=
change in y from P to Q
change in x from P to Q

is constant, and that constant is the slope of the line.

Example 13.

(0, 5), (2, 9), (−1, 3) are three points on a line. Calculate rise/run for each pair of points.

Solution. First we should verify that indeed the three points lie on a line, using the slope calculation
In each case that calculation produces 2 as the slope of the line, for example, taking the third and first
points, we have:

3 − 5
−1 − 0

=
−2
−1

= 2
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Let us see what this example tells us. Start with two pairs of points; suppose that we find that the slope
calculation produces the same number. This does not mean that the two pairs of points are on the same
line (what does it mean?). However if there is a point in common to the two pairs, then all three do lie
on the same line. This tells us something important. Given a line, pick two points P, Q on the line.
Calculate the slope m using these two points. Now take any point X on the plane, and calculate the slope
of the slope triangle using the points X and P (or Q). If the result is m, then, by this observation, X is on
the line; if it is not m, then X is on the line. We have generated a protocol for deciding whether or not a
point X is on the line through P and Q.

Going back to example 12, the line through any pair of these points has slope 2. So, for any point (x, y),
if any of the calculations

y − 5
x − 0

y − 9
x − 3

,
y − 3

x − (−1)

gives the value 2, then they all do, and (x, y) is a point on the line. If any of these computations do not
give 2, then none do, and (x, y) is not on the line. So, we have this test for a point (x, y) to be on the line:

y − 5
x − 0

= 2

By multiplying both sides by x we get −5 = 2x, or y = 2x + 5. This is called the equation of the line.
Instead of choosing the first point, we could have chosen one of the other two getting the test:

y − 9
x − 2

= 2,
y − 3

x − (−1)
= 2

No matter what point we choose for the test, after simplification we will always get the equation y =

2x + 5.

Chapter 3 starts with an examination of techniques to find the equation of a line, beginning with this example.
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Chapter 3
Representations of a Linear Relation

The purpose of this chapter is to develop fluency in the ways of representing a linear relation, and in extracting
information from these representations. In the first section we shall study linear relations among quantities in detail
in each of the realizations: formulas, tables, graphs and context, and develop fluidity in moving among them.
Although the Core Standards refers to the concept of function, in this chapter we continue this as a discussion
of linear relations, which, when of the form y = mx + b is called a function. The transition in thinking from
“equations” to “relations” to “functions” is - as was that from “unknowns” to “variables” - subtle but significant.
The outcome for the student is to develop a way of seeing functions dynamically, and as expressions of the behavior
of two variables relative to each other. For these reasons, we move ahead slowly; in this chapter developing
technique in studying linear relations, in chapter 4 concentrating on the simultaneous solution of two equations,
and then returning to an in-depth study of functions in chapter 5.

In the second section we go more deeply into the relationship of the geometry and algebra of lines; giving the
slope conditions for two lines to be parallel or perpendicular. There are two advantages in introducing this topic
now. First, it provides an opportunity to introduce translations and rotations and use their basic properties, and
second it gives an application of the idea of slope in comparing two lines.

3.1 Linear relations: creating graphs, tables, equations of lines

Interpret the equation y = mx + b as defining a linear function whose graph is a straight line. 8.F.3.

Determine the rate of change and initial value of the function from a description of a relationship, or from two
(x, y) values, including reading from a table or a graph. 8.F.4.

In example 13 of Chapter 2, we considered three points: (0, 5), (2, 9) and (−1, 3), and calculated the rise/run for
each pair of points always arriving at the answer: slope = 2. So, (2, 9) and (−1, 3) are on a line through (0, 5) of
slope 2. But there is only one line through (0, 5) of slope 2, so it must be that all three points lie on the same line.

P

Q

Q′

L

L′

Figure 1

It is intuitively clear that there is only one line through a given point and
of given slope, and figure 1 shows us why. The lines L and L′ intersect at
the point P; we have drawn the slope triangle with a run of one unit for both
lines. If the lines L and L′ are different, then the rise for these lines is different
(otherwise Q and Q′ would be the same point), and so the slope is different.

We can also give an algebraic argument. Start with two lines L and L′ and let
the equation for L be y = mx + b, and that for L′ be y = m′x + b′. If the lines
intersect that tells us that there is a value for x at which the expressions mx+b
and mx′ + b′ have the same value (namely the y coordinate of the intersection
point). Let x0 be that value of x, so that mx0 + b = m′x0 + b′. Now, if the lines
have the same slope, m = m′, and now subtracting mx0 from both sides, we
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get b = b′; that is, the lines L and L′ have the same equation, and therefore are the same line.

Now, let’s pick up where we left off in Chapter 2, and recall the definition of the equation of a line. We start with
a line L, and a point P on L with coordinates (a, b). If (x, y) is any other point on the line we must have

y − b
x − a

= slope of L.

Because there is only one line through P of that slope, we also know that if (x, y) is not on the line L, this
computation cannot give the slope of L. Thus the above equation is a test for a point to be on the line L, and thus
is called the equation of the line Returning to the points (0,5), (2,9) and (−1, 3), we can use any two to calculate
the slope, 2, and then use any of the three points to test for membership in the line:

y − 5
x − 0

= 2
y − 9
x − 2

= 2
y − 3

x − (−1)
= 2

Thus, for example the point (3,11) is on the line because it passes the test: the slope calculation with any of the
given points always gives 2. On the other hand, (6.2) is not on the line, for each of the computations gives a
number different from 2. Of course, we don’t have to test the slope equation with every point on the line, but just
with one point (and maybe another to check the calculation).

The equations above are not in simplest form, and if we clear of fractions and simplify to the form y = mx + b
we do get the same values of m and b. This could not be otherwise, for we can identify m and b as characteristics
of the line: m is its slope and (0, b) is the intersection of the line with the y-axis. So, when put in simplest form
(y = mx + b), there is only one equation of the line.

Let’s follow this through for each of the above equations, first clearing of fractions, and then isolating y on the left
hand side of the equation

y − 5
x − 0

= 2

y − 5 = 2x

y = 2x + 5

y − 9
x − 2

= 2

y − 9 = 2(x − 2)

y = 2x − 4 + 9

y = 2x + 5

y − 3
x − (−1)

= 2

y − 3 = 2(x + 1)

y = 2x + 2 + 3

y = 2x + 5

So, we ask: is (3,10) on the line? We calculate the slope of the line segment between (3,10) and (2,9), and get 1.
Thus (3,10) is not on the line. But (3,11) is a point on the line, since (11 − 9)/(3 − 2) = 2. More importantly, note
that every slope calculation (as those just executed) always simplifies to a unique equation y = mx + b.

Once we know the slope of the line, we can use any point on the line to calculate the equation of the line. And
if we know two points on the line, we can use those points to compute the slope. Then, using one of the points
and the slope, calculate the equation of the line. Restating this: if we know a point on a line and the slope of the
line, we can calculate the equation of the line. This corresponds to the geometric fact that a point and a direction
determine a line. Next, if we know two points on a line, we can calculate the equation of the line; corresponding
to the the geometric fact that two points determine a line.

To sum up: The equation of the line (the test for a point (x, y) to be on the line) can always be written in the
form y = mx + b, called the slope-intercept form of the equation of a line because m is the slope, and (0, b), the y
intercept is on the line. No matter what points on the line we choose for the calculations, the point-slope form of
the equation will always be the same.
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One last important point, to which we will return in the next section and again in Chapter 5. An equation of the
form y = mx + b describes a process: As the value of x changes, the value of y changes along with it. And, the
slope is calculated as the quotient of the change in y by the change in x between any two points on the line:

m =
y1 − y0

x1 − x0

so it is the rate of change of y with respect to x, and the fact that the graph is a line tells us that the rate of change
is constant. Since b is the value of y when x = 0, we also refer to b as the initial value.

Example 1.

Masatake runs at a constant rate. At a recent marathon, his friend Jaime positions himself at the 5 mile
marker, and Toby is at the 8 mile marker. Masatake passes Jaime at 8:40 AM, and then passes Toby at
9:01 AM. If Masatake can keep up that rate, at what time will he finish the race? A marathon is 26.2
miles long.

Solution. The problem states (twice) that we assume that Masatake runs at a constant rate. Therefore
the relation between minutes and miles is linear and the rate of change is constant. Note that the order of
the variables is not specified, so that we can talk about the rate as minutes per mile or miles per minute.
As we’ll see, the context often shows us which to choose: in this case since the information desired has
to do with time, we probably should describe the rate as minutes per mile. In any case, it is desirable
to be flexible in the move from one to the other. Using the two measurements we can find that rate:
between the two sightings he runs 3 miles in 21 minutes, so is running at a rate of 21/3 = 7 minutes per
mile. When Toby saw Masatake, he still had 18.2 miles to run. At 7 min/mi, remembering that

Miinutes =
Minutes
Miles

×Miles ,

it will take him (7)(18.2) = 127.4 minutes, or about 2 hours and 7 minutes more. So Toby expects him
to finish the race at 11:08 AM. If we also ask, at what time did Masatake start the race? - we know that
he started 5 miles before he passed Jaime, and that is 5 · 7 = 35 minutes. Masatake started the race at
8:05, and he will have run the whole marathon in 3 hours and 3 minutes.

Notice that in working this problem we did not seek an equation to solve, but instead thought about the
problem algebraically, using the basic rate equation. The basic fact used here is that the time running
between two points is proportional to the distance between the points, and we find the constant of
proportionality, 7, using the two given points. In the end, since we now know the initial value of time,
we can write the equation for the line:

Time = 8 : 05 + 7 (Miles) ,

however, be careful in computing with these numbers, since there are 60 minutes (not 100, as the notation
might suggest) in an hour.
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Example 2.

Given the point P : (3, 5) and the number m = −1, find the equation of the line through through P with
slope m.

Solution. Following the above, the point X : (x, y) is on the line if
the slope calculation with the points X and P gives −1:

y − 5
x − 3

= −1

This simplifies to y = −x + 8.

y

x8

8

Example 3.

Given the points (2, 1), (−1, 10), find the equation of the line through those points. First we calculate the
slope using the given points:

10 − 1
−1 − 2

=
9
−3

= −3

Now, the equation of the line is given by the slope calculation using the generic point (x, y) and one of
the given points (say (2,1)):

y − 1
x − 2

= −3

or, y − 1 = (−3)(x − 2), which simplifies to y = −3x + 7.

Example 4.

Given a straight line on the coordinate plane, such as that in figure 2, find its equation. One way to do
this is to discover the values of b and m by locating the y intercept and drawing a slope triangle. In
figure 2,the y-intercept is 7, and if we go across by 1 unit, the graph goes up by 3 (be careful to note the
different scales on the coordinate axes. This gives y = 3x + 7 as the graph. Another way is to locate two
convenient points (such as (1,10) and (6,25) since the line goes through these intersections of gridlines),
and use them to calculate the slope.

−3 −2 −1 0 1 2 3 4 5 6
−5

0

5

10

15

20

25

Figure 2

Typically, the first thing to do in trying to understand a relation is to make a table of solutions to see what
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information we can gather. Then, plot the data points on a graph, and connect them. As an example,
consider the relation x + y = 5. Make a table of representative values.

x −8 0 1 3 4 5 8
y 13 5 4 2 1 0 −3

From the table we see that as x increases, y decreases. In fact, whenever x increases by 1, y decreases
by 1, confirming that the slope is −1

Here is the graph:

−8 −6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6

8

10

12

14

Connecting the points on the graph, we get a straight line. Every point on the graph is a solution, even if
it wasn’t included in our list of solutions. For any point (x, y) on the graph, if we add x and y we get 5.

Notice that if we shift the line down by 5 units (or to the left by 5 units), the slope is still −1, but the
new line goes through the origin. This new line then is the graph of the equation y = −x, which can be
rewritten as the relation x + y = 0. Another way to see this is to notice that moving a point downward by
5 units is the same as subtracting 5 from the y coordinate of a point (with no change in the x coordinate).
We can write this as (x, y)→ (x, y − 5), and say: under the downward shift by 5, the point (x, y) goes to
(x, y − 5). We can write this xnew = x, ynew = y − 5, so the relation x + y = 5, rewritten as x + (y − 5) = 0
becomes xnew + ynew = 0.

We will return to the subject of shifts later in this chapter; for now it suffices to note that a the geometric
act of shifting downward by 5 units amounts to the algebraic act of replacing y − 5 by y. Similarly, a
shift to the left by 5 units is realized algebraically by replacing x − 5 by x.

Example 5.

Shift the line y = x upwards by two units, so that the point (x, x) goes to (x, x + 2). In particular, notice
the equation of the new line is y = x + 2. Similarly, a shift downward of 3 units of the graph of y = 2x
brings us to the graph of the equation y = 2x − 3.

Let’s return to the signal characteristic of a linear relation between the variables x and y: the rate of change of y
with respect to x is constant, and this constant is the slope of the graph of the relation. In particular, if a situation
is given in which two variables are related and there is a constant rate of change, then the relation is linear. What
we have wanted to observe in the last few examples is that if we shift the graph of a linear function so that the new
graph goes through the origin, then the new graph is a graph of a proportional relation. Furthermore, the rate of
change of y with respect to x along both graphs is the same.
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Compare properties of functions (linear) presented in a different way (algebraically, graphically, numerically in
tables or by verbal descriptions). 8.F.2.

Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms
of its graph or table of values. 8.F.4.

Up until now we have been speaking informally about a “relation” between the variables x and y rather than
“function” and now is a good time to put these words on a firmer footing. Technically speaking, a relation
between the variables x and y is a region in the plane. Examples:

a. x < y, the relation x is less than y, is the region in the plane below the line through the origin that makes a
45° angle with the x-axis;

b. x and y are both less than 1 and greater than 0 is represented by the unit square in the first quadrant;

c. a line in the plane expresses the relation “(x, y) is a point on the line’.” 5x−3y+7 = 0 is a relation expressed
algebraically: it consists of all pairs (x, y) that satisfy this relation.

In this chapter, we will focus on linear relations. A linear relation is expressed by a line in the plane: (x, y) are
in this relation precisely when (x, y) is on the line. As we learned in the preceding section, if the line is non-
vertical, we can describe it by an equation of the form y = mx + b. If the line is vertical, there is no relation in the
colloquial sense, because x is always the same number, while y can be anything. Similarly, if the line is horizontal
(y = 0x + b), there is no discernible relation since x can be anything, and y always remains equal to b.

When the relation is given as a recipe for going from a value of x to its related value y, then we say that y is a
function of x. We look for functions when we have a situation involving two variables x and y, and we have a
strong suspicion that the value of x somehow determines the value of y. Then we look for the recipe that makes
the “somehow” explicit. For example:

a. Our car salesman’s monthly salary is determined by the number of cars sold and indeed we were given
the recipe: the monthly salary is $1000 plus $250 for each sale in that month. Then we translated this to
the algebraic expression: C = 1000 + 250N, where C is the number of income for N cars sold. Yes, C,
compensation, is a function of the number N of cars sold.

b. The equation y = mx + b expresses a function. The recipe is this: First, pick a number x. Second multiply it
by m. Third, add b. The game described in example 12 of chapter 1: “Pick a number from 1 to 20. Add three
and double the result. Add 8. Take half of that number. Subtract your original number.” It is a complicated
way of describing the function: for any x, go to 7, which corresponds to the line y = 7, and that is the basis
of the “trick:” to every number in the domain, the function assigns the number 7. We will continue and
deepen this discussion in Chapter 5.

Example 6.

Consider the relation: the sum of two numbers is 5.

Let x and y represent the two numbers. The sum of x and y is x + y; the assertion is that this is 5. This
relation can be expressed by the equation

x + y = 5
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The recipe: “Pick a number for x and solve for y” describes a function since we know how to solve linear
equations, so this does give us a y for every x. If we write the solution symbolically we get: y = 5 − x,
whose set of rules are: given the input x, subtract it from 5: that is the output y. This is one reason to
think of the function as a black box rather than as a set of instructions: for there could be many different
sets of instructions that give rise to the same function (and that is the basis for this kind of “math trick.”)

Example 7.

Let‘s return to Masatake‘s marathon. His friend Jack also ran the race, but because of the crowd he
didn‘t start running until 8:10. Jack however runs faster than Masatake, at 6.8 minutes per mile. Does
Jack finish before Masatake?

Solution. At 6.8 minutes per mile, Jack runs the marathon in (26.2)(6.8) = 178.16 minutes, or 2 hours
and about 58 minutes, and arrives at the finish line at 11:03 - a photo finish with Masatake!

To summarize: to find the equation of the line through the two points (x0, y0), (x1, y1), first calcu-
late the slope of the line using the given points:

m =
y1 − y0

x1 − x0

If (x, y) is any point in the plane then it is on the line L if and only if the slope calculation gives m:

y − y0

x − x0
= m

If the variables x, y are in a linear relation (that is, the graph of the relation is a line), the relation can
be expressed in the form of the function y = mx + b, where m is the slope and b is the y-intercept.

A linear relation, as we have been using it, is determined by an equation of the form Ax + By = C. If both A and
B are zero, we just have the statement 0 = C, which is not describing any relation between x and y. If just B = 0,
we get the vertical line x = C/A which does not describe a function. If just A = 0, we get the line y = C/B which
describes the constant function: for any x, let y = C/B. If A and B are both nonzero, we can write the equation
in the form y = mx + b, exhibiting y as a function of x: y = −(A/B)x + (C/B). The graph of this relation is a
non-vertical, non-horizontal line of slope −(A/B) and y-intercept C/B.

Example 8.

Find the slope of the line given by the relation 3x − 7y = 11, and write the equation in slope-intercept
form.

Solution. By the above, the slope of the line is −(3)/(−7) = 3/7. Set y = 1 and solve the equation for
x. We find x = 6, so (6,1) is a point on the line. We could also use the laws of arithmetic to write y in
terms of x, getting

y =
3
7

x −
11
7

from which we conclude that the slope of the line is 3/7, and the point (0,−11/7) is on the line.
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Section 3.2 Parallel and Perpendicular lines

Example 9.

Let us return to the water measurement activity in example 3 of chapter 2, and plot both sets of weight
data as the y coordinate, and the height on the x-axis. Connecting the two sets of data with a line, we
get the following graph, where the blue (upper line) is the measured weight and the red (lower line) is
the weight of the water

0 1 2 3 4 5 6 7 8
0

10
20
30
40
50
60
70
80
90

100
110

Figure 4

In many of the examples discussed above, we talked about changes in the relation between the two variables that
result from a shift, or a translation. To make this precise: a translation by (a, b) is a motion of the plane by a
horizontally, followed by a motion of the plane by b vertically.

Example 10.

Consider the graph of x + y = 5, as described in Example 6. Shift the graph upward by 3 (that is by
(0, 3)). What is the equation of the new line?

Solution. Since we have increased y by 3, x + y has increased by 3, so the equation of the new line
x + y = 8. Here is another way to see this. Let (xnew, ynew) be the coordinates of the point to which
(xold, yold) is moved. We know that

xold = xnew and yold = ynew − 3

The equation of the old line is
xold + yold = 5

which is, in terms of the new coordinates:

xnew + ynew − 3 = 5

Since we are drawing the lines on the same coordinate plane, we can remove the word “new” to get

x + y − 3 = 5 or x + y = 8

Finally we can verify these observations with the table:

x −8 0 1 3 4 5 8
Old y 13 5 4 2 1 0 −3
New y 16 8 7 5 4 3 0
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Example 11.

Translate the line y = 2x by one unit in each coordinate, so that (x, 2x) goes to (x + 1, 2x + 1). Find the
equation of the new line.

Solution. Here we have the relation

xold = xnew − 1 , yold = ynew − 1

So the equation
yold = 2xold

becomes
ynew − 1 = 2(xnew − 1)

removing the word “new,” this becomes y − 1 = 2(x − 1), which simplifies to y = 2x − 1

If the line y = mx is translated by (a, b), then the equation of its image is

y − b = m(x − a)

Line 1

Line 2

Figure 5

Now, two lines are said to be parallel if there is a translation that takes one
into the other. The statement in the box tells us that if two lines are parallel,
they have the same slope. It is also true that if two lines have the same slope,
they are parallel, that is: there is a translation that takes one into the other.
How do we find that translation? Consider the image in Figure 5 depicting
two lines with the same slope:

Each orange arrow represents a translation. Observe, using two pieces of
transparent graph paper, that each of those translations takes line 1 to line 2.
You should conclude that, given any points P on line 1, and Q on line 2, the
translation from P to Q takes line 1 to line 2. Since this diagram can be of
any two lines with the same slope (we have omitted coordinates to emphasize
this point); we can conclude

Two lines are parallel if and only if there is a translation of one line to the other. Parallel lines have
the same slope and lines with the same slope are parallel.

In chapter 8 where we will study translations in more detail, we will note that if two lines are parallel they never
intersect, and conversely, if two lines never intersect they are parallel. This statement (a version of the Parallel
Postulate of Euclid) cannot be verified by observation because we cannot see infinitely far away. For this reason,
it has been discussed throughout history, the issue being whether or not it is a necessary part of planar geometry.
It turned out, in the 19th century, that it is, for there are geometries different from planar that satisfy all of the
conditions of planar geometry but the Parallel Postulate.

Two lines are perpendicular if they intersect, and all angles formed at the intersection are equal. This of course is
the same as saying that all these angles have measure 90°.
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To understand perpendicularity, we will need the idea of rotation. A rotation is a motion of the plane around a
point, called the center of the rotation. To visualize what a rotation is, take two pieces of transparent coordinate
paper, put one on top of the other and stick a pin through both piece of paper. The point where the pin intersects
the paper is the center of the rotation. Now any motion of the top piece of paper is a visualization of a rotation.
For any figure on the bottom piece of paper, copy it onto the top, then rotate the top piece of paper and copy the
figure on the top to the bottom. That image is the rotated image of the original figure.

Figure 6

In figure 6, we see the result of rotating the red line (the line with positive
slope) through a right angle (90°) with the center C. The blue line (with
negative slope) is the image of the red line under the rotation.

Notice that the dark lines and the light lines correspond under the rotation,
so they have the same lengths. Notice also that these are the triangles that
are drawn for the slope computation except that the rise and run has been in-
terchanged: in terms of lengths, rise(red) = run(blue), run(red) = rise(blue).
However, there is one last (and important) thing to notice: the slope compu-
tation is in terms of differences between coordinates, and not lengths. In our
diagram the sign of one pair of differences (represented by the black lines)
has changed, while the sign of the other pair of differences has not. We can
summarize this as follows:

For the red line,

slope(red) =
length(black)
length(gray)

and for the blue line,

slope(blue) =
length(gray)
− length(black)

from which we can conclude that the product of the slopes of the blue and red lines is −1. Since we did not use
any coordinates to make this argument, this statement is general, so long as neither line is horizontal or vertical.

To recapitulate: if we rotate a line L (red in figure 6), (90°) about a point P on the line, getting the new line L′ then
the products of the slopes of L and L′ is -1. The following statement follows from this assertion:

If lines L1 and L2 are perpendicular at their point of intersection, then the product of their slopes
is −1. If the product of the slopes of lines L1 and L2 is −1, then they are perpendicular at their
point of intersection.

To see this, first, let us suppose two lines L1 and L2 intersect perpendicularly at a point P. Now rotate the line
L1 by 90 ° to get the line L′1; then the product of the slopes of L1 and L′1 is −1. But since there is only one line
perpendicular to L1 at P, L′1 and L2 are the same line. To show the second statement: again, suppose that L1 and
L − 2 intersect at P but this time suppose the products of their slopes is -1. Again rotate L1 by 90 ° to get the line
L′1, and again L′1 has the same slope as L2, so must coincide with L2.Thus L1 and L2 are perpendicular.

When the lines are given by a linear relation, it is easy to write the relation of the line perpendicular to it:

If a line L is given by the relation Ax+By = C, then the equation Bx−Ay = D (for any D) describes
a line L′ perpendicular to L.
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This is because line L has slope −A/B, and line L′ has slope B/A.

Example 12.

Consider the line L given by the equation 3x + 4y = 20. The last statement tells us that all lines
perpendicular to L have an equation of the form 4x − 3y = D, where D is to be determined by the point
of intersection of the two lines. So, to find the equation of the line L′ perpendicular to L that passes
through the point (4, 2), we just calculate 4(4) − 3(2) = 10; the equation of L′ is 4x − 3y = 10.
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Chapter 4
Simultaneous Linear Equations

Section 4.1: Understanding Solutions of Simultaneous Linear Equations

Analyze and solve pairs of simultaneous linear equations. Understand that solutions to a system of two linear
equations in two variables correspond to points of intersection of their graphs, because points of intersection
satisfy both equations simultaneously. 8.EE.8a

Simultaneous linear equations refers to a pair of equations of the form Ax + By = C, where A, B,C are specific
numbers, positive or negative. To say they are simultaneous is to ask: for what, if any, values substituted for the
variables (x and y) are the equations both true at the same time? Those pairs of values are the solutions of the
simultaneous equations. To illustrate: x + 2y = 10, x − 3y = 0 is a pair of equations, describing two relations
between the variables x and y. If the context requires them to both be true, they are simultaneous. A solution is
x = 6, y = 2, because that substitution makes both statements true. In this chapter, we want to explore procedures,
both algebraic and graphical, to determine the solutions of simultaneous linear equations.

Example 1.

x = 21, y = 17 is a pair of simultaneous linear equations. Clearly there is only one solution, namely
x = 21, y = 17. Suppose I want to disguise this: these are the ages of my older siblings, and I am asked
for their ages. OK, I’ll say: the sum of their ages is 38. The inquisitor is not satisfied: there are many
pairs of numbers whose sum is 38. OK, I add the information that the difference in their ages is 4. Now,
can the inquisitor determine their ages? If he lets them be x and y, he can now write down the two pieces
of information algebraically: “the sum of their ages is 38” becomes x + y = 38. “The difference in their
ages is 4” becomes x − y = 4. The two equations

x + y = 38, x − y = 4

are a pair of simultaneous linear equations, for which the actual ages of my siblings are a solution. But
is this enough information for the inquisitor to find the solution? If I know the sum and difference of
two numbers, do we know the numbers? The answer to this is “yes,” and to solve the problem we must
discover how to get from the sum and difference of two numbers back to the originals.

Example 2.

Let’s give another example, in the form of a game, that illustrates the same process:

1. Pick two numbers.

2. Double one and add the other. Tell me the result.

3. Now exchange the numbers and do the same. Tell me the result.
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The numbers I received are 30 and 27. After a second, I say “Your two numbers were 8 and 11.”

How did I get the answer so fast? Let’s investigate this by analyzing the process. In Examples 1 and 2,
we start with a particular pair of numbers. Then we perform algebraic operations on them: in the first
problem we added the two numbers and then subtracted the two numbers. From x = 21, y = 17 we went
to x + y = 38 , x − y = 4. The challenge to the inquisitor is to find a way to go back. Maybe he should
add these two equations:

x + y = 38, x − y = 4; adding we get (x + y) + (x − y) = 38 + 4,

which simplifies to 2x = 42, so we’ve found x: x = 21. Now let’s subtract the two equations:

x + y = 38, x − y = 4; subtracting we get (x + y) − (x − y) = 38 − 4,

which simplifies to 2y = 34, so we have also found y: y = 17.

Let’s analyze the second example in the same way. The two numbers picked are x and y. In step 2; we
calculate 2x + y and inform the questioner that 2x + y = 30. Then, in step 3, we form 2y + x and assert
its value is 27. So the questioner knows that

2x + y = 30, 2y + x = 27

Let’s now do the same with this information: Add what we know:

(2x + y) + (2y + x) = 57,

which simplifies to 3(x + y) = 57, or x + y = 19. Now subtract what we know:

(2x + y) − (2y + x) = 30 − 27

or x − y = 3. Now we know the sum and differences of the two numbers, so we can apply the technique
of eExample 1 to obtain x = 11, y = 8.

The point of these examples is to see how to get from one pair of simultaneous equations to another, so that
the solution set is the same. In one direction, when we want to disguise the numbers, we continue this process
until we have sufficiently confounded the subject. In the other direction we select operations that unscramble that
information. The tools we employ are these:

a. Add equals to equals (x = 21, y = 17 became x + y = 38);

b. Subtract equals from equals (x = 21, y = 17 became x − y = 4);

c. Multiply equals by a nonzero number (in the case of 2y = 34,we multiply both sides by 1/2).

Using these operations we can get from one pair of simultaneous equations to another pair so that the solution for
the two pairs of equations does not change. Note that it is important, since we have two unknowns that we must
have, at every stage, two equations. If I have in mind the numbers 17 and 21, and I tell you that the sum is 38, you
do not have enough information to find the numbers. I either have to tell you that one of the numbers is 17 (or 21),
or I have to give you another piece of scrambled information, such as: the difference of the two numbers is 4.

The point is not that we apply these operations at random, but we do so in order to reach our objectives. As we
shall see in the next section, it is the form of our given information and the actual known numbers that show us
the operations to use. There is one last tool for solving, that of substitution:
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d. Replace an expression in one equation by an equal expression obtained from the other equation.

Example 3.

Lovasz has 5 marbles more than twice the number of marbles that Tonio has. Together they have 107
marbles. How many marbles does Lovasz have?

Solution. First we represent the unknown numbers by letters: Let L be the number of marbles that
Lovasz has, and T the number of marbles that Tonio has. We are told that “Lovasz has 5 marbles more
than twice Tonio’s”; this translates to L = 5 + 2T . The second fact is that the sum of all the marbles
is 107, so L + T = 107. The first equation tells us that L and 5 + 2T are the same number, so we can
replace L by 5 + 2T in the second equation to get:

5 + 2T + T = 107.

From Chapter 1 we know how to solve a linear equation in one variable: combine like terms on the left
and subtract 5 from both sides to get 3T = 102, so T = 34: Tonio has 34 marbles. To find L, we turn
to the first equation and replace T by 34, since we know these are equal, and we have L = 5 + 2(34), so
L = 73. We can use the second equation again to check this result: 73 + 34 = 107.

Before going to the use of these operations to solve systems, we turn to the representation of this process by
graphs.

Example 4.

Consider the linear equations 3x + y = 7, x + 3y = 5. Graph both equations on a coordinate plane and
find the coordinates (x, y) of the point of intersection.

Solution. The slope of the first line is −3, and of the second, −1/3. Since the slopes are not the
same, the lines are not parallel, so they must intersect. Now, using a point on each line (for example, the
y-intercepts (0, 7) for the first line and (0, 5/3) for the second, we graph the lines as in Figure 1.
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3x + y = 7

x + 3y = 5

Figure 1

The figure shows the point of intersection to be (2, 1). We should confirm that by checking that the
substitution x = 2, y = 1 satisfies both equations:

3(2) + 1 = 7, 2 + 3(1) = 5

In this example, we have graphed the given linear relations, and read off, from the graph, the coordinates
(2, 1) of the point of intersection. As this point lies on both lines, those coordinates ( x = 2, y = 1) satisfy
both equations. This is what it means to “solve the pair of simultaneous equations:”
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Example 5.

Consider the linear equations x − 2y = 8, 2x + 5y = 34. Graph each equation on the same grid with the
same axes , and read off the coordinates (x, y) of the point of intersection.

Solution. Again we see that the two lines have different slopes (1/2 and −2/5), so the lines are not
parallel and have a point of intersection. We draw the graphs of these equations (see Figure 2) and read
off the coordinates of the point of intersection as (12, 2). Since (12, 2) lies on both lines, the values
x = 12, y = 2 will satisfy both equations.
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2x + 5y = 34

x − 2y = 8

Figure 2

Furthermore, since there is only one point of intersection of two nonparallel lines, this is the unique
solution.

What happens if the lines are parallel? We look at this case in the next example:

Example 6.

Consider the linear equations 2x + 5y = 10, 4x + 10y = 40. Graph each equation, and look for the
point of intersection. These equations provide graphs of two different lines (since they have different
y-intercepts, (0, 2) and (0, 4)) that are parallel, since they have the same slope (−2/5). In particular, there
is no point of intersection, which tells us that there are no values x = a, y = b that satisfy both equations,
The graph of these lines (Figure 3) confirms this.
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Figure 3
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Example 7.

Now, consider the linear equations 2x + 5y = 20, 4x + 10y = 40. The graphs of these equations are the
same, since the lines they describe have the same slope and the same y-intercept.

In fact, if we put these equations into slope-intercept form, they both simplify to y = −( 2
5 )x + 4. In this

case, there are infinitely many solutions to the pair of equations, since the coordinates of every point
on the line satisfies both equations. Notice that one of the original equations is a multiple of the other
(divide both sides of the second equation by 2), so they are equivalent expressions. This will always be
the case when a pair of simultaneous linear equations has more than one solution.

Summary: Given a pair of linear equations, there are three possibilities for simultaneous solutions:

1. The rate of change of y with respect to x is different for the two equations. In this case the
graphs of the equations are lines with different slopes so are nonparallel, and intersect in a
point. The coordinates of this point give the unique solution of the pair of equations.

2. The rate of change of y with respect to x is the same for the two equations, but they have
different intercepts. In this case, the equations define lines with the same slope and thus
parallel. If the lines are different, there is no solution to the simultaneous equations.

3. The rate of change of y with respect to x is the same for the two equations, and the equations
define the same line. In this case, the coordinates of any point on the line gives a solution
for the pair of equations.

In short, if two lines have different slopes (are not parallel) then there is a (single) point of intersection. If two
lines have the same slope ( are parallel), then either there is no solution, or they are the same line and there are
many solutions.

8 9 10 11 12 13 14 15 16

(2, 12)

Figure 4

Take a look at the graphical implications of the operations on simultaneous
equations described above. Start with the equations of Example 5: x − 2y =

8, 2x + 5y = 34. The graphs are shown in Figure 2. Add the two given
equations, getting 3x + 3y = 42. If we subtract the first from the second, we
get x + 7y = 26. Put the graphs of these two additional equations onto the
Figure 2, resulting in Figure 4. The green and purple lines are the graphs of
these new equations. Note that the graphs go through the same point; that
is, the solution for the original pair of equations is also the solution for the
new set of equations. So, we may now proceed to solve using the new set of
equations. Our objective is to manipulate the equations with these operations
so that we end with equations whose graphs are horizontal and vertical lines
(in the case the graphs of x = 12 and y = 2).
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Section 4.2 Solving Simultaneous Linear Equations Algebraically

Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the
equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because
3x + 2y cannot simultaneously be 5 and 6. 8.EE.8b

Method of Substitution

This is a straightforward method, and is to be used when one of the pair of simultaneous linear equations expresses
one variable (say y) in terms of the other (say x) . Then we can replace the y in the other equation by the expression
in x, and obtain a new equation with only one variable. Example 3 above illustrates this method; here we further
develop the idea.

Example 8.

I went to the grocery store and bought 15 pounds of grapefruit and oranges. I bought 3 fewer pounds of
grapefruit than oranges. How many pounds of each fruit did I buy?

Solution. Pick letters to represent the number of pounds of grapefruit and oranges bought. I’ll pick G
for grapefruit, and R for oranges (since O is not a convenient symbol, being so close to the symbol for
zero). The first statement says that G + R = 15. The second statement says that G = R − 3. So we can
replace G in the first equation by R−3, giving us R−3 + R = 15. This simplifies to 2R = 18, so I bought
9 pounds of oranges. Using the second statement, we see that I bought 6 pounds of grapefruit.

Example 9.

Two numbers (x, y) are related by the equation 5x− y = 17. We also know that y is a function of x, given
by y = 2x + 4. Find the solution.

Solution. Substituting, we get 5x − (2x + 4) = 17. This we can solve for x: the equation becomes
3x − 4 = 17, leading to 3x = 21, and so x = 7. Now we use the functional relation between y and x to
find y; y = 2(7) + 4, so y = 18.

Example 10.

Sometimes a little work is needed to write one of the variables in terms of the other. For example, solve

2x + y = 12
2x − 3y = 4

Solution. We can rewrite the first equation as y = 12 − 2x, and then replace y in the second by this
expression:

2x − 3(12 − 2x) = 4

Now we solve this equation for x, first simplifying to get 2x − 36 + 6x = 4, or 8x = 40, so that x = 5.
The corresponding y is y = 12 − 2(5) = 2. Note another way to solve the equation: subtract the second
equation from the first to get 4y = 8, and thus y = 2.

Example 11.

Another day I went to the store and spent $26.25 for 15 pounds of grapefruits and oranges. The grapefruit
cost $1.25 per pound and the oranges cost $2.00 per pound. How many grapefruits and oranges did I
buy?
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Solution. Using the same letters as in Example 7, the first equation tells us that G +R = 15. G pounds
of grapefruit cost me $1.25(G), and R pounds of oranges cost me $2.00(R). The sum is $26.25, giving
me the equation

1.25G + 2R = 26.25

The first relation tells me that R = 15 −G, so I can replace R in the second equation by 15 −G, giving
me

1.25G + 2(15 −G) = 26.25

This becomes 1.25G + 30 − 2G = 26.25, which simplifies to .75G = 3.75, so G = 5. Then, returning to
the relation G + R = 15, we see that R = 10. I bought 5 pounds of grapefruit and 10 pounds of oranges.

Some of the choices made in this problem were arbitrary: to begin with, We could have solved for G in
terms of R (G = 15 − R), and then written the equation in R:

1.25(15 − R) + 2R = 26.25

but it is better to have to multiply 2 and 15 instead of 1.25 and 15. Nevertheless the result would have
been the same. And again, when we came to .75G = 3.75; we could change to fractions to get

3
4

G =
15
4

from which we see directly that G = 5. In almost all cases such choices have to be made, and should be
made on the basis of making one’s work as simple as possible.

The Substitution Algorithm is

1. Rewrite one of the equation so as to express one variable in term of the other;

2. Substitute that expression for that variable in the other equation;

3. Solve for the second variable, and put that value in the first equation to find the solution.

Method of Elimination

For many pairs of linear equations to be solved simultaneously, there are ways to find the solutions that are easier
than trying to express one variable in terms of the other. Here we will describe a method that is the default method
for most computational programs.

Example 12.

Solve

3x + 2y = 12
2x + 2y = 10

Solution. If we look carefully at the equations, we see that, on the left side, the difference between
the first and the second expressions is x, and the difference on the right side is 2. Since we can add and
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subtract equations without changing the solution set, we thus choose to subtract the second equation
from the first to get x = 2. Putting that value in either equation gives us an equation in the single
unknown y, and we conclude from either that y = 3.

Example 13.

Solve 6x + 2y = 20, 3x − y = 2.

Solution. From the previous example, we learned that if the coefficient of y is the same, we can
combine the equations so as to eliminate y, then solve for x, and use that known value for x in one of the
preceding equations to solve for y. We can arrange this by multiplying both sides of the second equation
by 2, giving us the pair of equations

6x + 2y = 20
6x − 2y = 4

If we add these equations y subtracts put and we get 12x = 24, from which we find that x = 2. Now
putting this value of x into either equation, gives us y = 4, so the complete solution is (2, 4).

We could also subtract the equations to get 4y = 16, giving us the value y = 4; upon substitution of this
value in either equation, we get x = 2.

Example 14.

Solve

3
5

x +
1
3

y = 12

1
3

x +
1
2

y = 18

We include this example to illustrate that the complexity of the numbers involved should not be a deter-
rent to applying these methods, but one must be careful. There are various ways of solving this problem
(besides feeding the data into a computer program) that make the arithmetic manageable. First, we
might clear of fractions by multiplying the first equation by 15 and the second by 6 to get:

9x + 5y = 180
2x + 3y = 48

Now multiply the first equation by 3 and the second by 5 so as to get the coefficients of y the same:

27x + 15y = 540
10x + 15y = 240

Subtracting the second from the first produces 17x = 300, so that x = 300/17. We can now put this
value of x in any of the preceding equations to solve for y. Let’s use the equation 2x + 3y = 48. We get

2
(

300
17

)
+ 3y = 48

leading to

3y =
48 × 17 − 600

17
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or 3y = 216/17, giving us the value 72/17 for y.

We can avoid the large multiplications and divisions by first noting that if we multiply the original first
equation by 3/2, we make the coefficients of y the same:

9
10

x +
1
2

y = 18

1
3

x +
1
2

y = 8

Now subtract the second from the first to eliminate y and get(
9
10
−

1
3

)
x = 10

Multiply by 30 to clear of fractions to get (27 − 10)x = 300, which is not the same equation for x we
have above, so proceed in the same way.

One may be tempted to switch to decimals to get

0.6x + 0.33y = 12
0.33x + 0.5y = 8

and then use a calculator for the computations to follow. However, one has to be careful: 0.33 is not
1/3, but an approximation of 1/3. As one goes through calculations, the error in the approximation
tends to grow, often to the extent to make the end result untrustworthy. So, for example, to achieve
accuracy within 2 decimal points, one should start with the approximation 0.3333 for 1/3, making the
calculations that much more difficult.

We summarize this procedure in the following set of rules. Keep in mind that in many of the examples above, and
in the problems for discussion and homework, the particular numerical coefficients give a clue on how to proceed.
In real-life problems we do not have that luxury: experimentally determined numerical coefficients are hardly ever
so convenient.

The Elimination Algorithm is

1. Multiply the equations by nonzero numbers so that the coefficients of one of the unknowns
are the same;

2. Take the difference (or sum) of the equations to obtain a new equation in just one unknown;

3. Solve for that unknown, then substitute that value in one of the original equations to solve
for the other unknown.

Comments:

1. The first step is to arrange for the coefficients in the two equations of one of the variables to be the same. There
can be many ways of doing this; they are all valid. For example, for the pair

2x + 4y = 12.30
x + 5y = 13.20
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we could have multiplied the first equation by 5 and the second by 4 to obtain:

10x + 20y = 61.50
4x + 20y = 52.80

Now the difference leads to 6x = 8.70, and x = 1.45. It worked; nevertheless, a good rule to follow is this: look
for the simplest multipliers to use. Here it would have been to multiply the second equation by 2 so as to eliminate
x.

2. The second step suggests that the elimination may involve taking the sum, rather than the difference. For
example:

2x + 6y = 38
x − 3y = 11

Step 1 suggests multiplying the second equation by 2 to obtain

2x + 6y = 38
2x − 6y = 22

Now, adding the equations will eliminate y and we get 4x = 60, so x = 15. Notice that, if we took the difference,
we get 12y = 16, so y = 4/3.

3. When we eliminate one of the variables, suppose both disappear? Consider the pair of equations:

2x + y = 7
4x + 2y = 4

Following the algorithm, we multiply the first equation by 2 to get:

4x + 2y = 14
4x + 2y = 4

Subtracting the second equation from the first gives the equation 0x + 0y = 10. Since there are no values of x and
y that can make that statement true, the same is true for the original pair: there are no solutions. Notice that the
slope of both lines is −1/2; that is, the lines are parallel. So, this corresponds to the graphical situation where the
lines never cross. Similarly, if we consider this pair of equations:

2x + y = 7
4x + 2y = 14

and follow the rules, we end up with 0 = 0, which is a true statement, but not a very informative one. What we are
observing is that both equations define the same line, since the second equation is just double the first.

4. The choice of method to use is up to the solver, and depends upon the coefficients of the equations, just pick
the method that is easier. For example, consider the pair of equations

3x + 7y = 18, y = 6 + 3x

If we apply the elimination method, we first have to rewrite the second equation as −3x + y = 6, and then proceed.
But, why? Our procedure is to isolate one of the variables and the second equation has done that for us. So, we
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can go right into the the replacement step, and substitute the value of y in terms of x given by the second equation,
into the first, to get

3x + 7(6 + 3x) = 18

which simplifies to 24x+42 = 18, leading to 24x = −24, or x = −1. Substituting that value into the other equation
gives us −3 + 7y = 18, or y = 3.

Example 15.

Solve the pair of equations:

x + y = 10
11x + 8y = 92

The first equation tells us that y = 10 − x; substituting that in the second gives

11x + 8(10 − x) = 92

which we can now solve for x. We get 11x + 80 − 8x = 92, which simplifies to 3x = 12, with the result
that x = 4. Now substitute that in the first equation to find that y = 6. Try the method of elimination, to
compare the difficulty of both methods.

Example 16.

In the next example, it is not so clear at first which is the more direct method:

4x + y = 10
13x + 11y = 79

Looking at the two equations, the method of elimination suggests multiplying the first equation by 11,
leading to rather large and unwieldy numbers to work with. On the other hand, the first equation easily
transforms into the equation y = 10 − 4x. Substituting 10 − 4x for y in the second equation gives us

13x + 11(10 − 4x) = 79
13x + 110 − 44x = 79

−31x = −31

from which we get x = 1. Now substituting that in the first equation gives us 4 + y = 10, or y = 6.

Don’t forget that you have to use both equations! So, for example, if you solve the first equation for y in terms of
x, substitute that expression in the second equation, not the first. If you substitute in the first, you get a true, but
not very useful equation.
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Example 17.

In many problems the coefficients will not work out well (as in Example 14 above), and we may be
satisfied with an estimate of the solution. In such cases it is advisable to turn to graphical solutions. In
fact, graphical solutions can only provide approximate solutions, unless the point in question is at the
intersection of gridlines. Furthermore, the estimate is only as good as the grid lines of fine. Let’s work
an example for which we will be satisfied with an estimate within one decimal point. The equations are:

3
4

x +
4
5

y = 16,
1

10
x +

7
10

y = 7

In Figure 5 we have graphed the lines corresponding to these equations, from which we can read the
approximate solution x = 12.6, y = 8.2.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

3
4 x + 4

5 y = 16 1
10 x − 7

10 y = 7

Figure 5

Example 18.

It is very helpful to use a spreadsheet, like Excel, to find graphical solutions. On the spreadsheet, we can
calculate two points on each line, and then graph the lines on the same grid. For the pair of equations

6x + 5y = 31
5x − 3y = 0

Figure 6

From the graph (see Figure 6) we estimate the coordinates of the point of intersection to be (2.2, 3.6).
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Solving Real World Problems using Systems

Solve real-world and mathematical problems leading to two linear equations in two variables. 8.EE.8c

Example 19.

Let’s return to grapefruits and oranges (Example 11). Joanne and Rudy shop at the same store. Joanne
bought 6 lbs of grapefruit and 4 lbs of oranges, and spent $8.22. Rudy bought 6 lbs of grapefruit and
5 lbs of oranges and spent $9.09. What is the cost of a pound of oranges? How much is a pound of
grapefruit?

It is always a good idea to study the problem carefully, looking for clues for solving. For example, in
this case we see that Rudy bought the same amount of grapefruit as Joanne, and one more pound of
oranges than Joanne, and spent $.87 more than Joanne. So, we conclude that a pound of oranges costs
$.87.

Now, Rudy spent $9.09, of which 5 × .87 = 4.35 was on oranges. Thus he spent 9.09 − 4.35 = 4.74 on
6 lbs of grapefruit , so each pound of grapefruit is worth (4.74)/6 = .79.

In general we may not be so lucky as to see a shortcut right away, so it is always a good idea to apply
the rules for solving equations developed in Chapter 1. First: what do we want to find out? - the answer
is the cost of a pound of grapefruit, and the cost of a pound of oranges. Let’s call those unknowns g
and r. (It might be good to point out that these are not the same G and R as in example 11: there the
issue was of “pounds of fruit,” here it is of “cost of fruit.” We have chosen lower case letters to avoid
this confusion). Now look at Joanne’s purchase: 6 lbs of grapefruit at G per pound, and 4 lbs of oranges
at R per pound. This totals to $8.22, giving us the equation:

6g + 4r = 8.22

Do the same with Rudy’s purchase, to get 6g + 5r = 9.09. Using the general rules of elimination
developed above, we subtract the first equation from the second to get g = .87, and continuing as above,
we’ll find r = .79.

Example 20.

Alfredo and Juanita also shop at a store in the same chain, but one that is eight states away. Joanne
bought 6 lbs of grapefruit and 3 lbs of oranges, and spent $10.77. Alfredo bought 3 pounds of grapefruit
and 2 pounds of oranges and spent $5.94. What is the cost of a pound of oranges? What is the cost of a
pound of grapefruit?

Here we can’t just look at the difference in the purchases: it tells us 3 lbs of grapefruit and 1 lb of
oranges costs $4.83, which is not of much help. But if we double Alfredo’s purchase, we can say that 6
lbs of grapefruit and 4 lbs of oranges costs 2 × 5.94 = 11.88. This gives us the pair of equations (using
the same meaning of g and r as in the preceding example), but eight states away:

6g + 3r = 10.77
6g + 4r = 11.88

Now the difference on one side is 1 pound of oranges, and on the other, $1.11. The cost of one pound
of oranges is $1.11. Let’s go back to one of the original equations to find the cost of grapefruit. Alfredo
spend $2.22 on the 2 lbs of oranges, and $5.94 − 2.22 = 3.27 on 3 lbs of grapefruit . Thus one pound of
grapefruit costs 3.27/3 = 1.09.
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Example 21.

Each day, ferry companies A and B cross the straights of Gibraltar connecting the Spanish port of Tarifa
with Tangier and Ceuta. Company A makes 4 round trips to Tangier and 3 to Ceuta, logging 332 miles.
Company B makes 2 round trips to Tangier and 4 to Ceuta, logging 302 miles. What are the distances
of Tarifa from Tangier and Tarifa from Ceuta?

Solution. Let T represent the distance in miles of Tarifa from Tangier, and C, the distance between
Tarifa and Ceuta. Then a round trip from Tarifa to Tangier is 2T miles and a round trip from Tarifa to
Ceuta is 2C miles. Company A makes 4 round trips to Tangier - that logs 4(2T ) miles - and makes 3
round trips to Ceuta -that logs 3(2C) miles. The sum of the distances of all these trips is 332 miles,
giving us the equation

4(2T ) + 3(2C) = 332

Applying the same reasoning for company B leads to the equation

2(2T ) + 4(2C) = 302

So, our task is to find the values of T and C that simultaneously satisfies the two equations

8T + 6C = 332, 4T + 8C = 302

Now solve, to find the answers: Tarifa is 21.1 miles from Tangier, and Ceuta is 27.2 miles from Tangier.

Example 22.

Lisa is interested in discovering the rate of gas consumption of her new car, both in city miles and
freeway miles. She selects two weeks in which she is driving in the city during the weekdays, and goes
on a road trip on the weekend. The following table shows the miles she logged:

City Freeway
Week 1 131 210
Week 2 180 120

In each week she consumed 14.3 gallons. In miles per gallon, compute her rates of consumption both in
city miles and in freeway miles.

Solution. Lisa wants to know the values of “city miles per gallon” and “freeway miles per gallon.”
But, while the units of the rows in the table are miles, the information she has is that the sums across the
rows in this table are in gallons. The equations she has to write down for each week are of the form:

(∗) gallons of city driving in the week + gallons of freeway driving in the week = 14.3 .

Remembering that

(∗∗) gallons = miles
gallons
miles

,

she realizes that can convert the data of the table into equations involving gallons by choosing as the
variables “gallons per miles.” Now the equation (*) becomes

(∗) city miles
city gallons
city miles

+ freeway miles
freeway gallons
freeway miles

= 14.3 .
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So, she labels the variables in which she is interested as C = city gallons per mile, and F = = freeway
gallons per mile. Uusing these variables the rows lead to this system of equations:

131C + 210F = 14.3
180C + 120F = 14.3

Noticing that the numbers on the right side of each equation is the same, it is tempting to subtract the
second from the first to get:

−49C + 90F = 0

or F = (49)/(90)C, which is already a startling fact: freeway driving is about 5/9 the cost (in terms of
fuel used) of city driving. But to get the original problem, we start by replacing F in one of the original
equations by this expression in terms of C, and then solve for C. We get C = 14.3/245 = 0.058. If we
substitute this into either of the original equations, we can solve for F , to find that F = 0.031. Now, we
get back to the original goal of the problem: to find the rate of fuel used with respect to miles for city
driving and for freeway driving. These are the reciprocals of the values of C and F. Calculating those
reciprocals, we find that, for Lisa’s new automobile, city driving gets 17.13 city miles per gallon, and
32.25 miles per gallon on the freeway.
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Chapter 5
Functions

In the preceding chapters we started to move our thinking about equations from looking for a solution to that of
expressing a relation and of the use of letters to represent unknown numbers or quantities to that of variables. In
both those cases we thought of x (or y or z or . . . ) as a yet-to-be-determined number (or numbers) to be found
by “solving” in the case of “unknowns”, and “measuring” in the case of “quantities.” But now we interpret the
symbols x, y, z as variables; that is, they are to be understood as ranging over a whole set of numbers, and our
interest in those variables is in understanding the relation expressed by the equation. As we shall see, this is not so
hard if the relation is expressed as a graph, harder if expressed algebraically or by a table, and difficult if expressed
by an algorithm. In all cases, we are moving from a static study of relations to a dynamic one: it is in this sense
that letters represent “variables.”

An equation with two variables x, y expresses a relationship between them. A solution of the equation consists
of two specific numbers, one for each variable, which, when substituted in the equation makes a true statement.
In case there is more than one solution, we may talk about the solution set. We usually use an ordered pair (x, y)
to represent each solution. The order indicates which variable represent which number. Thus, the instruction
“substitute (5,−1) in the equation” means: set x = 5 and y = −1. For example, if the relation is 3x − 2y = 1, then
(1, 1) is in the relation, but (2, 3) is not.

In section 2 of chapter 3 we defined relation and function in rather abstract terms, and went on to illustrate
by specific examples. In particular a function (written y = f (x) and expressed as “y is f of x”) is a set of
instructions which produce, from a choice of specific number for x (called the input), a specific value for y

Function

x

y

Input

Output

Figure 1

(the output). Said another way, in any function, a given input does not give
one output some of the time and a different output at other times. In this
chapter, our focus will be on the relation between inputs and outputs, and not
on the set of instructions that produce an output for a given input. To say this
a different way, our interest is not on the details of the calculation of a y when
given an x, but rather on questions like: if x gets larger, what happens to y?
If x is halved, what happens to y? If x is replaced by x + 2, what happens to
y? This is why we introduce the letter “ f ” to represent the set of instructions,
without focusing on them. So, we can read “y = f (x)” as “start with x, do f
to it, and record the output y.”

We now look at a function as a “black box” as in figure 1, so that we can
concentrate on the relation between input and output, and move away from
the mechanics of computing values of a function.

This chapter completes this transition from the concept of unknown to that of variable, and that from equation to
that of function. We will focus on characteristics that separate linear from nonlinear functions. In the last section
we discuss, in contexts, ways of expressing the relation among variables through various representations.
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5.1 What is a Function?

1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is
the set of ordered pairs consisting of an input and the corresponding output.

2. Compare properties of two functions each represented in a different way (algebraically, graphically, numeri-
cally in tables, or by verbal descriptions). 8.F.1,2

Example 1.

The following table is that of the bus schedule between Salt Lake City and Price.

Salt Lake City to Price
LvSLC 8:00 9:00 10:30 12:00 13:00 14:30 16:00 17:00 18:30 20:00
ArrPrice 11:15 12:15 13:45 15:15 16:15 17:45 19:15 20:15 21:45 23:15

Examining the table, we notice several things: first of all, it takes the 8:00 bus three hours 15 minutes
to make the trip; furthermore, this time is the time every trip takes. Also, the change between any two
departure times is the same as the change between any two arrival times. Graphing these data (see Figure
2) makes these observations even more clear. The graph shows that the data lie on a line,
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Figure 2. Bus Schedule

in fact, a line of slope 1, since any change in departure time results in precisely the same change in
arrival time. We conclude that, whenever a bus leaves Salt Lake City, it arrives in Price 3 hours and 15
minutes later. This we call a model for the given data: in this case the model is linear. We use the model
to show us immediately when a bus arrives in Price, for any given departure time from Salt Lake City.

If a new bus, with departure time 6:30 were to be added to the schedule, we schedule it to arrive in Price
at 9:45. More generally, if a bus leaves SLC at D o’clock, it should be expected to arrive in Price at
D + 3 : 15 o’clock. Letting A represent the arrival time, we arrive at this relationship between D and A:
A = D + 3 : 15. We see that this formula tells us that the arrival time is completely determined by the
departure time; that is A is a function of D. In such a statement, we consider A and D as variables in the
sense that they can have any (time) value, and the relation A = D + 3 : 15 will hold.

Before going on, we note that, in the real world, arrival time is not completely determined by departure
time; factors along the road may delay, or advance, the arrival of the bus. Figure 3: Real Data gives a
more realistic graph of what may actually happen in a day.

This graph, of actual data, does give us important information: we should expect, on average, for the
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Figure 3

trip to take 3 hours and 15 minutes. However, in the early morning and late evening, the trip is likely
to be quicker, while in the late afternoon, it is likely to take longer. We can still model these data with
the straight line A = D + 3 : 15, but with the understanding that the arrival time is subject to traffic and
weather conditions. We shall return to the subject of models for real data in Chapter 6. Our goal there
will be to interpret tables of actual data so as to discover a curve, or a formula, that best models the
actual data. For now, let us consider relations between two variables that give rise to functions.

Function Concept: Given two variables, x and y, we will say that y is a function of x if there is
a set of instructions (which may be expressed as a formula, algorithm or recipe) that determine a
specific y for a given x.

The notation used to assert that y is a function of x is y = f (x), where f stands for the set of rules that tell us how
to go from x to y. We read y = f (x) as “y equals f of x. Of course, we may use other letters (such as g, h, etc. to
represent other functions. This notation sometimes causes confusion, for students have become used now to using
letters to represent numbers. So it is useful at this time to be clear that, for the first time, we are using a letter ( f )
to represent an action(implementing a set of rules) rather than a number.

Example 2.

y = 3x + 7

This can also be given by the set of instructions: pick a number x, multiply it by 3 and add 7. Notice that
the instructions clarify the order of operations much better than the formula does, so it is good practice to
translate formulas to sets of instructions to better understand them - in fact this is exactly what happens
when we execute a sequence of operations on a calculator.

Example 3.

y =
1
x
, x > 0 .

Here, we do not have a rule to give a value of y corresponding to x = 0. We say that the function is not
defined for x = 0, or 0 is not in the domain of the function. For this function, x is a positive number,
so we often make explicit that we are only interested in the function for positive values of x. For this
function, we say that x and y are inversely proportional in the sense that if x is multiplied by any number,
the y is divided by that number.
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Plotting a set of values (x, y) that are related by a function provides a useful visualization of the function.The
usefulness depends upon the extent to which the selected points illustrate the important features of the function.
So, given rules describing a function, we create a set of points (x, y), where x is a number to which the rules apply
(that is, x is in the domain of the function) and y is the number we get when applying the rule . When we plot
enough points, we join them with a curve to get a representation of the function. For the general function this may
take some skill or additional information contained in the context, but - as we have seen in the preceding chapter
- for a linear function we need only find two points on the graph, and connect them with a line.

Let’s go through this analysis for the above examples.

Example 2 revisited.

y = 3x + 7

Make a table of representative values

x -2 -1 0 1 2 3 4
y 1 4 7 10 13 16 19

−4 −3 −2 −1 0 1 2 3 4
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5

10

15

20

Figure 4

Example 3 revisited.

y =
1
x
, x > 0 .

The rule here is “pick a positive number and take its multipleicative inverse.” We create the table using
the first eight positive half integers:

x .5 1 1.5 2 2.5 3 3.5 4
y 2 1 .67 .5 .4 .33 .29 .25

Example 4.

The ”Rambo Fliers” Come to Town. The local arena in Smalltown, Va., with occupancy limit 6000,
hosted the fabulously popular drums and celestine group, the ”Rambo Fliers” for a performance at 7 pm
one Saturday night. Admission was at a fixed price, and doors opened at 4 pm with open seating. To
accommodate those searching, the audience was admitted in groups (all those waiting to get in) every
15 minutes. The graph below is of the audience count at 15 minute intervals from 4 pm to 7 pm.

If we connect these lines, we get this:

©2014 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.

8MF5-4



0 1 2 3 4 5 6 7 8
0

1

2

3

4

Figure 5

0 1 2 3 4 5 6 7 8 9 10 11 12

1000

2000

3000

4000

5000

6000

0

Time from 4pm in 15 minute intervals

Se
at

s
fil

le
d

Figure 6. Occupancy at an Event
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Figure 7. Occupancy at an Event

This is a very good graphic: it tells us a lot about likely arrival times at the concert, observations we
might conjecture happen at any concert. At the beginning the audience flow is slow, but around 4:20 the
rate picks up and stays strong until about 6:40, when people begin to settled own. So, the model created
by the smooth connection is good for suggesting tendencies, but it is not an accurate portrayal of the
actual event. Since people are let in at 15 minute intervals, the audience count remains constant during
those intervals, and jumps to a new count at the 15 minute markers. So, the audience is a constant 300
from 4:00 to 4:15, and a constant 820 from 5:00 to 5:15 at which time it jumps by 400, and so on, The
largest jump is a t 6:00, when 1000 are let in all at once. Thus, the accurate graph of population count
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When we connect data points with a “smooth” curve we say that we are creating a continuous model of the process.
In many cases, this is much more useful than the “actual” graph (which is discontinuous) For example if we kept
an audience count of a football stadium that seats 100,000 people, the count is discontinuous (it takes time for one
person to get through the turnstile, and furthermore the count is always a positive integer), but that level of detail
is not of interest and in fact would be a distraction. Similarly, stock market purchases are not continuous, but they
happen at such a large rate that anyone studying stock market behavior would use a continuous model (as we see
in the business section of the newspaper).

Sometimes it is important to distinguish discrete processes (those that change at separated instances) from contin-
uous processes (like water flowing down a river). For example, consider the use of electricity in a typical home.
We use electricity at a constant rate between the times an appliance is turned on or off. At those instances, the rate
changes abruptly. Since flicking a switch is an assault on the system (too many working appliances could throw
a breaker). These instantaneous changes are significant features of the study of electricity use; especially when
considering the rate of use for a whole city. Use of air conditioners on a very hot day could, and sometimes do,
shut the whole system. City planners want to understand this phenomenon so that they can plan for its occurrence.
Hence in this context it makes the most sense to look at the discontinuous graph joining the data points, while, in
the context of filling a football stadium, the continuous curve tells us more.

Before proceeding, this is a good place to introduce a little terminology that goes along with the function concept.
First, the set of values for which the function is defined is called the domain of the function. The range of the
function is the set of values that can appear as the output of the function. Let’s look over the preceding examples
to identify the domain and the range of the function.

• Example 1. If a table of corresponding (x, y) values is given, then the set of x values is the domain, and the
set of y values is the range. So, in example 1, the domain of the function is the set of values in the first row,
and the range is the set of values in the second row. Figure 2 is a graph of that function. We went on to note
(from either the table or the graph) that the difference between the y value and the x value is 3 : 15 (using
time notation). So, the equation y − x = 3 : 15 holds for all corresponding values of the function. Then we
went on to model the given data by that equation, which defines a new function, whose graph is the straight
line through the set of values of the first function. This new function is defined by the rule y = x + 3 : 15,
whose domain and range are both the set of all possible times of the day. This gave us a way of predicting
arrival times for buses leaving Salt Lake City at any time.

• Example 2. Here the function is defined by the rule: y = 3x + 7. To graph the function, we pick a set of
values of x, and calculate the corresponding value of y, thus creating a table. Then we plot the points on a
grid, and join these points with a line. It is important to stress that in this case the line is the graph of the
function; we created a table by picking values o fx arbitrarily, and then following the rules of the function.
In fact, since we recognize the defining equation as that of a line, we need only have picked two values for
x. Since the domain of a functions is the set of values to which we can apply the rules, the domain of this
function consists of all numbers on the number line.

• Example 3. In this example, we have already specified the domain: x > 0. Since the multi plicate inverse of
a positive number is positive, the range also is the set of positive numbers. Now, we might ask, what about
negative numbers? Yes, the equation y = 1/x does allow for a negative x, and for such an x the output will
be negative. So, potentially, the equation y = 1/x defines a function whose domain (and range) consists of
all nonzero numbers. However, the proposer of the function is the one who gets to decide on the domain.
Should she say that we want to only consider odd whole numbers divisible by 17, then that is the domain.
But, in this case the proposer specified that the domain consists of all numbers greater than zero, and we
conclude that this is also the range is the set

• Example 4. This is interesting because each time we make an improvement on the graph, we change the
domain and range of the function; To begin with, the table of values is the set of all times at 15 minute
intervals between 4:00 and 7:00, with the first data point recorded as 0 and the last as 12.

x 0 1 2 3 4 5 6 7 8 9 10 11 12
y 300 350 430 570 820 1220 1820 2670 3670 4470 5170 5720 6000
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The range is the set of positive integers on the second row of the table. These points are graphed in Figure 6.
But now, in Figure 7, we’ve modeled the data with a smooth curve. Here, the domain is the set of all times
between 4:00 and 7:00, and the the range, the set of all numbers between 300 and 6000. Our last observation
was that it doesn’t make sense to say that there are 1035.76 people in the stadium at 5:08; In fact there are
820 and that has been true since 5:00 and will be true until 5:15. So, we drew the more accurate graph,
Figure 8, of a function whose domain is all times between 4:00 and 7:00, but whose range has returned the
set of positive integers in the second row of the table.

Functions Defined by Graphs

A graph can represent a function using this as the rule:

Given a value for x, draw the vertical line through that value on the x-axis. Where it hits the graph,
draw the horizontal to the y-axis, That point is the value of y corresponding to the given value of
x.

For this rule to work, we must know two things:

a. for a given number a, the vertical line x = a intersects the graph;

b. for a given number a, the vertical line x = a intersects the graph only once.

If these two conditions are satisfied, then the rule works: the vertical line through a (on the x-axis) intersects the
graph at one point, and the horizontal line through that point intersects the y axis at some point b. This b is the
value of the function for the input a.

If either condition fails for a number a, then the function cannot be defined at a. We express this by saying that a
is not in the domain of the function. Just to say this another way, a graph defines a function for all numbers a for
which conditions a and b hold. That set of numbers is the domain of the function, and for any a in the domain,
the above rule produces the value of the function at a. In some cases, if condition b fails: that is, the vertical line
through some points on the x axis intersects the graph in more than one point, it may be possible to add a rule to
the definition of the function that picks the correct point on the graph. For example, consider the graph of y2 = x.
For negative values of x, there is no intersection point of the graph with the vertical line, so no negative number
is in the domain of the function. x = 0 produces only y = 0, so 0 is in the domain of the function. However, if
x > 0, the vertical line intersects the graph in the positive and negative square roots of x. If we add the rule “y is
not negative,” then we have describe a function for all non-negative numbers x: y is the non-negative square root
of x. This function is denoted y =

√
x. We will see this again in example 9.

Example 5.

Create a data table for points on the graph in figure 9.

Applying the rule, we can create this table of values of the function:

x -3 -2 -1 0 1 2 3
y 11 8 5 2 -1 -4 -7

First we observe that the graph is a straight line. We can pick any two points to find the slope of the line.
Let’s choose (−2, 8) and (1,−1) and calculate the slope:

m =
8 − (−1)
−2 − 1

=
9
−3

= −3
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Since the y-intercept is given by the point (0, 2), we know that b = −2, so the equation for this graph is
y = −3x + 2.

Example 6.

Create a data table for points on the graph in figure 10.

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 10

x -1 -.6 -.3 0 .2 .5 .8
y 0 .8 .95 1 .98 .87 .6

In example 5, the graph went through integer points so the pairs (x, y) were easy to find according to
the set of rules for graphs. In this example we have to pick values of x for which we could most easily
estimate values of y. In any case, this is not a line.

Example 7.

Federico and Nkutete are hired at the same time by the Boston Envelope Company. However, they have
different compensation contracts. Federico will start at an annual salary of $25,000, with guaranteed
raises of 6% each year, while Nkutete starts at an annual salary of $20,000, with guaranteed annual
increments of $1,000. Which contract is better?

Solution. The answer will depend upon how long they intend to work there. So, for example, at the
end of the first year, each gets a $1,000 raise, so, Federico still earns more than Nkutete. The next year,
Federico will get a slightly higher raise, but still has a lower salary. In fact, let’s tabulate the effect on
the salary of the annual raises for the first 12 years.
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Year 0 1 2 3 4 5 6 7 8 9 10 11 12
Federico 20000 21000 22050 23153 24310 25526 26802 28142 29549 31027 32578 34207 35917
Nkutete 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000

By the twelfth year, Federico will have a higher annual salary, but, his cumulative income of $318,343
is about $24,000 less than Nkutete’s cumulative income of $342,000. Besides, it is altogether likely that
they will both get promoted within the first ten years, so, the reasonable response to the question is that
Nkutete is getting the better deal. Let us look at the graph of the data (Figure 11)
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Figure 11

The graph clearly shows that, although Federico starts out with a higher salary, the gap between the
salary decreases over the year, and ultimately, Nkutete is the higher earner. But what if they both
worked at this same job for 40 years? In that span, who has gotten the better deal and by how much?
We will return to this example in the next section, where we will see some differences between these
two graphs that can shed light on this question.

5.2. Linear and Nonlinear Functions

Interpret the equation y = mx + b as a linear function. Observe that if b is not zero, the variables are not in
proportion; however, the change is in the variables between two points are in proportion (hence the idea of slope).
8.F.3

Distinguish between linear and nonlinear functions.

The characteristic of a proportional relationship is that the quotient y/x, for values in the proportion, is always the
same, and we call this the unit rate of y with respect to x. The significant characteristic of a line is this: for any
two points P and Q, the ratio of the change in y from P to Q to the change in x from P to Q is a constant, called
the rate of change of y with respect to x. This is an important characteristic: the variables in a linear relation are
in proportion only when the graph of the relation goes through the point (0, 0). To see this algebraically: if y is a
linear function of x; that is y = mx + b, the the quotient y/x, for x , 0 is

y
x

= m +
b
x

which is definitely not constant for b , 0.
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Important things to remember about linear functions are:

If the line intersects the y-axis in the point (0, b), then the equation of the line is y = mx + b.

If the line is horizontal, the slope is zero, and the equation of the line is y = b.

If the line is vertical, it has no slope, and its equation is x = a.

If the line goes through the origin, the equation of the line is y = mx and the values of y are
proportional to the values of x; otherwise said, y/x = m.

If the line has slope m, and the point (x0, y0) is on the line, then the equation of the line is

y − y0 = m(x − x0)

If (x0, y0), (x1, y1), then a point (x, y) is on the line if

y − y0

x − x0
=

y1 − y0

x1 − x0

At this point, it is desirable to look at a variety of examples of functions in various representations (formula, table,
graph) to make clear the distinction between linear and nonlinear functions. To illustrate this need, let’s go back
to the hires of the Boston Envelope Company. The data in Figure 11 shows the gap in salaries decreasing, but it
doesn’t make clear what the relationship will be in the long run. For that it is desirable to model these data by
connecting the points with a curve that doesn’t introduce any extraneous information (see figure 12).
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Figure 12

The curve modeling Federico’s salary is a straight line, while that for Nkutete is not; neither the table nor the graph
of data points showed a tendency for Nkutete’s salary curve to become steeper and steeper. If we calculate with
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the table, we can see that the rate of change of Nkutete’s salary gets larger over time; the value of the graph is that
it shows us this instantly.

As we continue to study data for two variables, looking for a relation between them, we hope to find a formula that
actually exhibits one variable as a function of the other. This will allow for prediction of future pairs of values not
on our table. To set the ground for this, we look at a collection of examples represented in various ways: formula,
tables or graphs.

Example 8.

y − 2x = 11

When we start, as in this case, with a formula relating two variables, it is not clear which is a function of
the other, if at all. Often the context tells us what choice to make, other times it is desirable for reasons
of computation, to make a choice. In this case, we could write y as a function of x:

y = 2x + 11

or x as a function of y:

x =
y − 11

2

Since the first is simpler, let’s make that choice, and create a table like this:

x -4 -3 -2 -1 0 1 2 3 4
y 3 5 7 9 11 13 15 17 19

Notice that every time x increases by 1, y increases by 2. Recall that this tells us that 2 is the slope of
the line, or the unit rate of change. See the graph (Figure 13, next page).
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Example 9.

y2 = −x + 1

Here, it is easier to make the table by writing the relation in the form x = 1 − y2 and finding values of x
corresponding to values of y. This gives us the table and graph

x -8 -3 0 1 0 -3 -8
y -3 -2 -1 0 1 2 3

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−3
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−1

0

1

2

3

Figure 14a

We see from this graph that this does not specify y as a function of x; at least not until we include a rule
that tells us, for any x which of the two candidate values is to be chosen. We may, for example, add the
rule: For each x, let y be the positive number such that y2 = −x + 1. Then we get this graph, which now
describes a function:
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0

1
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Figure 14b

To summarize: figure 14a (of the relation y2 = −x + 1) does not describe y as a function of x, because of

8MF5-13 ©2014 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.



the ambiguity in taking the positive or the negative solution of y2 = −x + 1. This ambiguity is resolved
by adding the stipulation: For a given x < 1, let y be the positive solution of the equation y2 = −x + 1,
resulting in figure 14b.

5.3. Modeling and Analyzing a Functional Relationship

This section - like many of the topics in 8th grade - is exploratory, with the goal of understanding functional
relationships in context. There are two processes to be introduced and explored. First, suppose that we are
considering two variables (for example: the height and girth of a maple tree) that we think might be functionally
related. We gather data on the variables, specifically pairs of the values of the two variables in a sample set, or
in experiments. Finally, we study the variables in a variety of ways to see if we can find a model (a specific
set of rules defining a function) that fits the data well enough to be able to make predictions on the outcomes of
further sampling or experimentation. Second, we may be given a functional relationship, that is, a set of rules
that determine values of the second variable dependent upon values of the first. This may take the form of an
equation involving the two variables, or an algorithm to compute one from the other. In this case we study the
functional relationship in a variety of representations (tables, graphs and equations) to see if we can understand
the properties of the relationship. In this chapter we shall look at what mathematicians call the deterministic data;
for example two different ways of measuring the same physical attribute. In the next chapter, we explore how
to (best) do this with data gathered at random, and thus subject to random inputs. In our first few examples, the
context clearly indicates a constant rate of change, and thus, a linear relationship. The subsequent examples show
a variable rate of change; here we explore what we can learn from the data. In every case, we make a choice of one
of the variables, x as the variable upon which the other variable, y is dependent. We determine, from the graph,
in what intervals y is increasing/decreasing as x increases, and we begin to understand the significance of those
points where this behavior changes.

Constructing Functions

Construct a function to model a linear relationship. Determine rate of change, initial value (use representations
+ context). 8.F.4

Example 10.

Heat and Temperature

The temperature of an object measures the amount of heat it contains. Temperature is measured in
degrees, denoted °. No matter what scale is used, it should be such that a change in the temperature of
an object is proportional to the change in heat content expressed in some other measure, such as calories.
However, caloric content is hard to measure directly, and so we turn to other means to quantify heat.
For example, some fluids expand in volume as they heat up, and in a linear way: the change in volume
is proportional to the change in caloric content. Mercury is such a fluid, and thus is the fluid of choice
in a thermometer. As the object heats up, the mercury expands and the column of fluid in the stem of
the thermometer rises. The important thing is that this change in height of the column of mercury is
proportional to the change in volume, and thus proportional to the change in heat.

The Celsius temperature scale is based on water: 0 °C corresponds to the heat content of newly melted
ice, and 100°C to water just starting to boil. Thus, if a pot of water measures 50°C,the increase in
caloric content from 0°C is half the increase in caloric content of the same amount of water at the
boiling point. Daniel Gabriel Fahrenheit was a doctor in the 18th century who wanted to measure the
heat generated by a disease in a human patient, so he invented a scale that was based on humans: 100
°F is the temperature of a healthy human being, and 0°F is the temperature of blood just about to freeze.
So, for example, if a person shows a temperature of 102 °F, that person is 2% hotter than a healthy
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person. By experimentation, Fahrenheit discovered that, in his temperature scale, the freezing point of
pure water is 32°F, and the boiling point of water is 212 °F.

Given that these two temperature scales are linear with respect to caloric content, they are linear with
respect to each other. So we can relate °C with °F by a linear relation. We know two points on the graph
of this relation: the freezing point of water, (0, 32) and the boiling point of water, (100, 212) (where we
have put °C as the first coordinate). The slope of the line graphing this relation is

212 − 32
100 − 0

=
9
5

This can be stated this way: a 9 degree change Fahrenheit is the same as a 5 degree change Celsius. Now
we also know the y-intercept: it is 32, since (0,32) is on the graph. Thus the function relating Fahrenheit
to Celsius is

F =
9
5

C + 32

Now, we can express Celsius as a function of Fahrenheit, by solving for C in terms of F:

C =
5
9

(F − 32)

Example 11.

At Mario’s Cut Rate Used Car Lot, Mario compensates his salespeople with salary + commission: each
salesperson receives a base salary and then a certain amount for each car sold. His more experienced
people get a higher base salary, but the new people get a higher commission, because he want to encour-
age them to be eager to sell cars. Sally, his most seasoned salesperson receives a salary of $4,000 per
month and a commission of $250 per car sold. Dmitri is a rookie, receives a salary of $2,800 per month,
but his commission is $325 per car sold. Now, let’s see what we can learn from examining these two
means of compensation.

Here a table of Sally’s and Dmitri’s earnings at 0, 1,2,3,. . . ,8 cars sold.

Cars Sold 0 1 2 3 4 5 6 7 8
Sally 40 42.5 45 47.5 50 52.5 55.0 57.5 60
Dmitri 28 31.25 34.5 37.75 41 44.25 47.5 50.75 54

Now we graph the data, and put lines through the points corresponding to Sally’s compensation, and
those points for Dmitri. We know that they all lie on a line, because of the constant rate of change ($250
per car for Sally and $325 per car for Dmitri).

As these lines have different slopes, they intersect. The point of intersection tells us the number of
cars each must sell in order to have the same salary. From the graph, we can read off the coordinates
of that point, or we can do that algebraically: Let N represent a number of cars sold, and S , Sally’s
compensation for N cars sold, and D, Dmitri’s compensation for N cars sold. The rules can be written
algebraically as

S = 4000 + 250N , D = 2800 + 325N

At the point of intersection S = D, so we have to find out, for what N is 4000 + 250N = 2800 + 325N?
The solution of that equation is N = 16: at 16 cars sold, Sally and Dmitri receive the same compensation,
$8,000.

Example 12.

A bookseller is trying to set a price for her books in such a way as to keep the carry-over inventory at an
acceptable level. So, she decides to vary her prices, month by month for a little over a year, to see the
relationship between price and inventory. Here are the data:
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Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Price 1.4 1.10 1.00 1.4 1.80 2.40 1.60 2.00 2.50 3.50 2.65 1.50
Inventory 90 98 75 55 98 146 115 100 110 175 125 92

We can’t tell much from these data, except that each time the price was lowered, the unsold inventory
was lowered. Maybe, if we reorder according to price, with the inventory as the dependent variable, we
get a different picture. In fact the picture we get is this:

0 1 2 3 4
0

50

100

150

200

Figure 15

We see several things that are not readily apparent from the table: generally speaking, as the price rises,
so does the inventory. We could conclude that, if we never want an unsold inventory of more than 150
items, then we should keep the price under $2 (well, almost all the time, in one month out of 10 this was
not true). We also don’t discern any curving of the data, so we might surmise that the relation (except
for random variations) is linear.

In general, if we are given a table of data, we should first determine (from the context) which variable should be
the horizontal, and which, the vertical. Then we should reorder the table in increasing order in x. We can now
check for linearity: if the change in y is proportional to the change in x (that is, given any two points, the quotient
of these changes is always the same number), then the data are that of a linear relation. An easier way, and one
which in any case gives good information, is to plot the points to see whether or not they lie on a line. The data
may have come from measurements which are prone to random error. So, if the points almost lie on a line, but do
not actually lie on a line, we may be able to conclude that the relation is linear.

Analyzing a Functional Relationship

Data that are collected from real contexts, such as a laboratory experiment, or a questionnaire, are very unlikely
to fall on a line - or for that matter in any precise pattern. Nevertheless, the graphed data may show a trend or
suggest a relation, or uncover an anomaly.

Example 13.

On average over the past 175 years, the hour by hour temperature, from 1 am to 9 pm, for an August
day in Salt Lake City is:

Time of day: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Temperature: 73 72 71 70 69 69 70 72 76 81 74 84 85 87 89 90 89 88 68 85 84
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Figure 13 is a plot of the points on a graph. We have connected those points with a smooth curve:
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Figure 16: Average August Temperature

The graph confirms some things that we should have expected on physical grounds: that the temperature
rises during the day as the sun moves directly overhead, and drops - more or less linearly - when the
sun is down. We also see that the highest temperature is later in the day than we might have suspected;
suggesting a cooling-off lag.

Now let’s look at the data for a particular day: August 26, 2012:

Time of day: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Temperature: 78 76 75 74 73 72 73 75 77 82 86 90 92 94 84 78 82 84 82 81 80

Here is the graph:
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Figure 17:Temperature, Aug. 26,2012

This starts out like a typical August day, but then there is a sudden decrease in temperature at 15:00 for
about 2 hours. This suggests a thunderstorm or the arrival of a cold front. However, the data show a
warming up around 17:00, returning to the “typical day.” This is not what happens when a cold front
arrives, so strengthens the argument for a thunderstorm.

Let’s look back at Figure 16, of average temperatures for August. Notice that the temperature rises
at a steady state until about 3 pm where it flattens out a bit. Since this is the average temperature, this
blip suggests that afternoon thunderstorms occur in August frequently enough to affect the average. This
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example is important because it illustrates the difference between “average” and typical. Figure 16 is not
the temperature picture for a typical day, for there are (at least) two typical days, one with no afternoon
thunderstorm (in which case the temperate will rse steadily until about 5 pm, and the other typical day
with a thunderstorm.

Eventually, we will discover that there are just a few most important graphs that come up while trying to model
situations. The following set of problems ask this: given a graph, can one describe a process, or situation that is
modeled by this graph?

Example 14.

25

y

x

Figure 18

The curve in Figure 18 starts at (0, 0). As x increases, at first y increases slowly, then during the next
period increases rather rapidly, and finally levels off at about y = 25. If you have ever gone to a concert
in a basketball arena, you have seen this behavior. In this model, time is on the x axis, and the y axis
shows the number of people in the arena (in thousands). At first, people dribble in slowly, and the rate at
which people enter the stadium rises rapidly, then rapidly lowers. Just as the game starts, the remaining
seats get filled more and more slowly.

Example 15.

y

x

Figure 19

Figure 19 looks like the profile of a ski run, suggesting that it is a graph of altitude against time as I ski
down a black diamond run that levels out at the bottom.
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Example 16.

y

x

Figure 20

Now this looks like a random graph, but our task is to find a context which might lead to this graph.
One thing that comes to mind, is that these are two islands separated by a deep trench. The x-axis can
be interpreted as sea level. In particular, x is distance along a straight line cutting through both islands,
and y is the altitude above (or below) sea level.
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Chapter 6
Investigate Patterns of Association in
Bivariate Data

In 8th grade, students investigate patterns of association in numerical (or “quantitative”) bivariate data by con-
structing and interpreting scatter plots. An emphasis is placed on informal linear association analyses. In addition
to using linear models to solve problems regarding numerical data, students explore categorical (or “qualitative”)
bivariate data through construction and interpretation of two-way frequency tables.

It should be noted up front that the practice of statistics is fundamentally different from the practice of mathematics.
Thus, the integration of statistics within a mathematics curriculum is potentially misleading, with respect to the
natures of both mathematics and statistics. While mathematics draws logical deductions from a set of axioms,
statistics does not. Instead, statistics endeavors to quantitatively communicate properties of and relationships
among observable phenomena. To that end, statistics is more like a scientific discipline than mathematical (e.g.,
the use of statistics is evidence-based, as its subject matter is analysis of data; statistical conclusions change over
time, as more data are collected in various ways; mathematical conclusions do not change, as propositions are
put to rest after being proved or disproved). To correctly convey the powers and weaknesses of statistics, teachers
need to be steadfastly aware of the language they use when communicating statistical ideas to students.

Although some of the following italicized words are not mentioned in the Utah core for the 8th grade, it may be a
good idea to casually demonstrate their usage while communicating with students.

An experiment is an activity for which outcomes occur randomly (i.e., based upon chance). The sample space of
an experiment is the set of all possible outcomes. A random variable is a function that maps the sample space
of an experiment to the set of real numbers. Realizations of a random variable are the specific values that the
random variable may assume. A random variable can be thought of as a quantity that can assume more than
one value, based upon chance events. We discuss two kinds of random variables: quantitative random variables
and categorical random variables. Quantitative random variables are those of cardinal numerical value (e.g., 3
feet; 2.73 gallons; 4 children), whereas categorical random variables are those representing some quality or name.
This distinction must be made clear in practice, since a set of categories can be easily replaced by nominal real
numbers.

Now that we have introduced some general statistical concepts, we turn our focus to the 8th grade, which concerns
itself specifically with bivariate data. A bivariate data set is a set of ordered pairs (x, y), where x and y are
realizations of two different random variables (X and Y), such that the specific realizations x and y correspond to
each other in some way (e.g., the ordered pair describe the same individual, they describe the same time period, or
they may be related through some other such rule of correspondence). The nature of the correspondence between
specific realizations x and y is described in the following examples.

Example 1.

Let X be the random variable “the European shoe size of a citizen of Springville”, and let Y be the
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random variable “the height in centimeters of a citizen of Springville”. Certainly, X and Y may assume
a myriad of realizations. Maria conducts an experiment by recording the shoe sizes and heights of 53
randomly-sampled Springville citizens (this is the sample space). The bivariate data collected by Maria
is the set of all 53 (x, y) such that x and y correspond to the same citizen. The “relation” between each
specific realization x and y in the bivariate data set is that each pair describes the same person’s shoe
size and height.

Example 2.

Let X be the random variable “the average cost of gasoline in Cedar City in a given year”, and let Y
be the random variable “the number of speeding tickets written in a given year in Iron county”. Lucas
conducts an experiment by looking up and recording the realizations of X and Y from the year 1972
through 2012. Lucas decides to pair each x-value with the y-value that corresponds to the same year.
Thus, Lucas’s bivariate dataset is the set of (x, y) pairs for each year in the given 41 year range.

Section 6.1: Construct and Interpret Scatter Plots for Bivariate Data

Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between
two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association,
and nonlinear association. 8.SP.1

Here, when the Utah Core refers to “quantities”, it means “quantitative random variables”. People are often
interested in whether or not one random variable is associated with another. For example, is there a relationship
between the number of television commercial broadcasts of a certain product and the number of sales of that
product? Do 8th grade students who can do many push-ups in P.E. class also tend to be able to do more pull-ups?
This section discusses methods of answering such questions about quantitative random variables such as “number
of push-ups”.

Conventionally, X is assigned to be the input random variable (i.e., the independent’ or “explanatory” variable)
from which we wish to predict the output’ variable Y (i.e., the (presumed)dependent’ or “response” variable).
Of course, one does not initially know if there exists any dependence structure between the two; quantifying the
relationship between X and Y , based upon observed data collected through random sampling, is precisely the goal
of our statistical analysis here. It is important to note that there is an obvious relationship between the two specific
realizations making up a single datum (i.e., a specific (x, y) pair), namely that there is some rule of correspondence,
such as the fact that they describe aspects (or qualities) of the same individual or time period. However, the
investigator is not interested in the relationship between realizations making up a single datum. The investigator
wishes to quantify the relationship between two random variables, X and Y , which describe an entire population,
not between the specific values x and y for a given subject. This point is subtle, but extremely important, lying at
the very heart of statistics: One cannot make inference on a population based upon an individual, nor vice versa.

To visually inspect the potential influence of one random variable on another, we depict our sample data on a
scatter plot. A scatter plot is a graph in the coordinate plane of the set of all (x, y) ordered pairs of bivariate
data. Consistent with the usual convention, we place the independent variable X on the horizontal axis and the
dependent variable Y on the vertical axis.

Example 3.

Izumi is the score keeper for her school’s basketball team. Izumi’s responsibilities include keeping a
record of each player’s total number of field goals made, the total field goals attempted during the season,
the total number of assists and the total number of rebounds. For those not familiar with basketball, let
us define these terms. Basketball is a game involving 5 players on each of two sides, using a ball and
“goals.” The playing field is a rectangle with “goals” at each short end of the rectangle. The goal is a
basket set 10 feet off the floor of the playing field, and the object of the game is to put the ball in the
basket. Any shot at the basket is an “attempt,” and if the ball goes through the basket, this is a “goal.”
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Goals can contribute two or three points, depending upon the distance covered. For Izumi’s purpose this
is not important: the important data are “goals attempted” and “goals made.” An “assist” is awarded to
a player who delivers the ball to someone who actually makes a goal. Finally, a “rebound” is awarded
to a player who catches the ball when a goal is attempted, but not made. While the names of players
have been changed, these data (for the 2012-13 season) were borrowed from actual Utah high school
girls basketball players via www.maxpreps.com.

Part of Izumi’s duties include helping the coach decide which players deserve awards at the end of the
season. Izumi notes that Ameila Krebs was the highest-scoring player for the season, but Amelia also
had a high number of failed field goal attempts. Izumi would like to further investigate the relationship
between the two random variables “Field Goals Made” and “Field Goals Attempted”. Izumi’s data are
given in the table below.

Player Field Goals Attempted Field Goals Made
Amber Carlson 34 15
Casey Corbin 368 134
Joan O’Connell 94 23
Monique Ortiz 102 36
Maria Ferney 91 32
Amelia Krebs 310 137
Tonya Smith 56 25
Juanita Martinez 58 17
Sara Garcia 151 61
Alicia Mortenson 67 26
Parker Chistiansen 94 29
Rachel Reagan 183 66
Paula Lyons 276 108
Thao Ho 221 94
Jessica Geffen 127 54

To better visually inspect her data, Izumi makes the following scatter plot of Table 1, where each data
“point” consists of the initials of the corresponding basketball player.
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2012-2013 Girls Basketball Data

Because Izumi would like to visualize each individual player, she chooses to identify them by their
initials. However, if she were more interested in the relationship between her two variables (Field Goals
Made and Field Goals Attempted), then she would likely make a plot with a marker for each data point
(see the plot on the next page).
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figure 1: 2012-2013 Girls Basketball Data

It should be noted that it is the latter plot with the points (rather than the initials) that is typically created.
We include the plot with the individual subjects identified by initial for two purposes:

1. To provide an intermediate step between the data table and the typical scatter plot;

2. To be able to reference individual players during the data analysis discussion. The nature of the
association between the variables Field Goals Made and Field Goals Attempted will be discussed
in the next section.

In addition to data about field goals, Izumi is curious about the relationship between the number of
assists a player makes and the number of rebounds a player makes in a season. She notices that the
players who make the most assists tend be in positions located far away from the basket. Izumi’s Assist
and Rebound data are given in the table below the plot on the next page.

Player Assists Rebounds
Amber Carlson 82 64
Casey Corbin 6 170
Joan O’Connell 43 37
Monique Ortiz 50 54
Maria Ferney 89 42
Amelia Krebs 25 193
Tonya Smith 70 39
Juanita Martinez 3 26
Sara Garcia 100 73
Alicia Mortenson 33 152
Parker Chistiansen 64 93
Rachel Reagan 45 67
Paula Lyons 59 117
Thao Ho 15 179
Jessica Geffen 30 113

From these data, Izumi creates the scatter plot below, again using the players’ initials to identify each
individual.

Again, note that if Izumi were interested less in individual players and more in the general relationship
between assists and rebounds, she would have made the next scatter plot.
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figure 2: 2012-2013 Girls Basketball Data

What is meant by pattern of association? It is perhaps easier to discuss what is NOT meant by this phrase. One
cannot use statistics to argue whether or not change in one variable causes the other to change. As an over-used
example, while there may be an association between the time of a rooster’s crow and the time of sunrise, the
rooster’s crow certainly does not cause the sun to rise (although he might think it does). While the truth, in a
particular context, may indeed be that “X causes Y”, this conclusion cannot be drawn by statistical practices. The
lack of ability to establish a cause-and-effect relationship between X and Y is precisely why we choose to use the
word “association”. More on this will be addressed later, via examples.

In the 8th grade, we focus on association in general, as well as linear association specifically (the latter more
formally known as “correlation”). Association between two random variables refers to evidence of dependence,
regardless of the nature of that dependence (e.g., linear, quadratic, or other). Loosely speaking, we call an asso-
ciation positive if Y generally increases as X increases, negative if Y generally decreases as X increases, and no
(or zero) association if Y tends to remain the same regardless of changes in X. A linear association refers to an
association that is well-captured by a linear relationship; exactly how that linear relationship is determined (i.e.,
how to sketch a “best-fit” line, and how “well” a line captures the behavior of bivariate data will be discussed
in Section 6.3. A perfect linear association occurs if the data fall exactly on a line of either positive or negative
slope. If the data fall perfectly on a horizontal line (zero slope), there is technically a linear (but uninteresting)
association, as change in X does not influence Y .
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Consider the following scatter plots.

Positive Correlation Negative Correlation

Strong Positive Correlation Strong Negative Correlation

No Correlation No Linear Correlation

Perfect linear association occurs when all points fall upon the same line:

Perfect Linear Association Perfect Linear Association (zero correlation)
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While 8th grade students need only discuss “association”, as opposed to “correlation”, it is important for teachers
and parents to know the difference, should the topic happen to arise. The above example of “perfect linear asso-
ciation” shows a positive correlation. However, contrast this example with the scatter plot on the right depicting
points lying on a horizontal line. While the points have a perfect linear association, they have zero correlation, as
Y is completely unaffected by the existence of X. Again, this needs not be discussed directly in the 8th grade, but
teachers should have this distinction tucked away in the back of their minds.

Example 4.

Recall the example of Izumi and her basketball data (return to figure 1). Upon studying the scatter plot
of field goal data, we see that the data suggest a strong positive linear association between the number of
field goals made and the number of field goals attempted over the course of a basketball season. Izumi
thinks, “I suppose this positive association makes sense, because these players are pretty good at what
they do; I would expect that more field goals attempted by these skilled players would be associated
with more field goals made. Of course, as a side-note, this positive association may not hold true for
unskilled basketball players, such as my cat, Mittens. No matter how many field goals Mittens attempts,
she’s probably not ever going to get the ball in the basket.”

Izumi then turns her attention to her Rebounds vs. Assists scatter plot (Fiigure 2), noticing a general
negative linear association. She thinks, “This association seems weaker than that between the field
goal variables, because these data points seem to be more scattered about the plane.” After noting the
negative association, Izumi thinks more deeply about what this might mean. “My scatter plot suggests
that players who tend to have more assists also tend to get fewer rebounds. I guess this makes sense
because players who tend to get assists are usually farther away from the basket, assisting to those
players who tend to be closer to the basket. Of course! It’s those players who tend to play closely to the
basket who tend to get the rebounds.”

Later, in Example 7, we discuss the important difference between association and causation. For now, note that an
association between variables does not imply that changes in one variable cause changes in the other variable.

In addition to observing trends (i.e., linear or nonlinear associations) in bivariate data, 8th grade students are to
describe other characteristics, such as clustering and outliers. Outliers are data points that notably deviate or
“stand out” from the general behavior of the data set. In 6th grade students studied several techniques to locate
such standouts; for bivariate data we make use of clustering.

figure 3

In general, clustering refers to a set of data points that are in close proxim-
ity to each other. A single scatterplot may have many clusters of different
sizes, and different clusters may be of different scientific interests. To exploit
clustering for the purpose of identifying outliers, we consider the process of
drawing a region around what seems like a self-consistent cluster of the data
(see figure 3) for an example.

In this figure, even without the ellipse, it is clear that, except for three points,
the data follow generally a positive linear trend. Often the data are not so
convenient, and it takes some skill to identify outliers. In any case, whether
easy or hard to identify, once the outliers have been identified graphically,
the researcher still must give justification to treat them as outliers in terms
of the context. Often, particularly in biomedical research, the outliers are the

important data points (perhaps identifying risk factors in a new medication being tested). There are various tools
that researchers can use to identify clusters and outliers (one is projection pursuit); but even when using those
tools, the researcher must seek an explanation of outsider status (i.e., experimental error, an erratic member of the
sample, origin of data suspect, etc.).

In figure 2 we see a definite negative trend in the data (rebounds decrease as assists increase), but the tendency
follows a broad band rather than a line. Let’s see how Izumi treats this:
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Example 5.

Upon studying her Rebounds vs. Assists scatter plot (figure 2), Izumi concludes that the negative as-
sociation would be stronger if not for the data point JM (the initials of Juanita Martinez), which lies
rather strikingly outside from the main graphical trend. This particular datum is likely an outlier. Izumi
thinks, “I wonder if there is some reason why Juanita’s datum stands out from the rest of the team. Oh
of course! Juanita transferred to my school from another one mid-season! Perhaps I should not include
her in my data analysis.” Here, Izumi has scientific reason to drop this outlier from her data set. Izumi
will further investigate the ramifications of dropping Juanita from her analysis in the next section.

Note that Izumi has a reason, based on the circumstances, to identify Juanita as an outlier. Looking at
the graph, she may also have considered Susan Garcia (SG) and Joan O’Connell (JO) as outliers, but
not found a contextual reason to exclude them, so left them in the data analysis. In almost every such
analysis, the identification of clusters and outliers (even if performed by a computer algorithm) has to
be reinterpreted and justified in terms of the context. The important thing is that students are engaged
in scientific discussions regarding various reasons for identifying various points as potential outliers.
and consequently investigate dropping this particular datum. At the same time it should be stressed
that there does not need to be an identifiable anomaly (e.g., some characteristic about the nature of the
datum), such as Juanita being on the team for only part of the season, that logically sets it apart from
the rest of the data) associated with a datum to label it an outlier. Outliers are simply data points that
“stand apart from the general trend”, regardless of the reason. So, the mathematics identifies “potential
outliers,” but the context explains why they should be excluded. Outliers should not be excluded simply
because the mathematics has so identified them. For, an outlier may flag a confounding variable that is
interfering with the relationship of interest. Or an outlier may just be an anomaly that should be ignored
and dropped from the data analysis. Only an analysis in context can distinguish erroneous data points
from critical pointers toward further research, and in fact, may not do so conclusively.

Section 6.2 Linear Models for Problem Solving

Construct and Assess Best Fitting Lines

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter
plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging
the closeness of the data points to the line. 8.SP.2

We deepen our understanding of an association of two variables by fitting (as best as possible) a straight line to
the scatter plot of collected data. There are algorithms for determining (in some measure of distance between data
sets) the “best fitting line,” but here we will just eyeball the data. Return to the scatterplots on pages 5,6: the
first four suggest a linear relation (the third and fourth more strongly than the first and second) and the fifth and
sixth suggest that there is not a linear association. Just as a mean, median, or mode provides a single-point (zero-
dimensional) description of an univariate data set (1-dimensional), a line provides a one-dimensional summary
of a bivariate (2-dimensional) data set. Furthermore, just as there are various ways to “measure the center” of a
one-variable data set, there are various ways to fit a line to bivariate data. Here, we explore a number of options,
focusing on the “eye-balling” technique. Recommended eye-balling software include the Illuminations website
from the National Council of Teachers of Mathematics:

http://illuminations.nctm.org/ActivityDetail.aspx?ID=146

This software has the feature that one can easily load data, and then can eyeball a best fitting line as well as ask
for the calculation of “a best fitting line.” You will be impressed how well the eye-ball guess is to the one created
by formula. (There is a physical explanation of this: the eye reacts to the energy produced by the input, and the
mathematical formula is based on a concept of energy between two sets of data).
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If students want a method of fitting lines that is both accessible and consistent between individuals (as opposed
to “eye-balling”, wherein each student’s line will slightly differ from those of others), the teacher may want
to investigate the median-median line. The median-median line is accessible to 8th graders because they have
previously learned the concept of median as a measure of center for univariate data (furthermore, the concept of
median is reinforced). The Quantitative Literacy Series book Exploring Data (Dale Seymour Publications, 1986)
provides an excellent explanation of this method. While “least squares” (the energy method) is the most widely-
used technique by scientists, it is too computationally intensive for the 8th grade, which should be informal and
exploratory. The median-median line provides a precise algorithm by which different students can obtain the same
line, requiring only visual (as opposed to computational) techniques. It is a pedagogical tool, rather than a realistic
tool.

The line that one fits to a scatter plot is meant to capture the behavior of the bivariate data, but in a simpler form
than the entire plot. Using this line, one can make estimated predictions (e.g., interpolation and extrapolation)
about the random variables X and Y , as they behave together.

Example 6.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

AC

CC

JO

MO
MF

AK

TS
JM

SG

AM PC

RR

PL

TH

JG

Field Goals Attempted

Fi
el

d
G

oa
ls

M
ad

e

Figure 4: 2012-2013 Girls Basketball Data

To summarize the general behavior of her data, Izumi decides to draw a line to fit her scatter plots. Izumi
first looks at the scatter plot of Field Goals Made vs. Field Goals Attempted (figure 1). Using her artistic
skills, she adjusts her transparent ruler on the plot until she thinks she has found a line that is as close to
each datum as possible. That is, Izumi tries her best to find the line that minimizes the distance between
each data point and that line. After carefully changing the angle of her ruler, she decides to trace the red
line shown in fFgure 4.

Next, Izumi turns to her Rebounds vs. Assists data, using her ruler to fit the red line as shown in figure
5.

Notice that the data points in figure 4 are more tightly clustered around Izumi’s best-fit line than the
points in the Rebounds vs. Assists scatter plot (figure 5). In fact, figure 5 supports the earlier decision
to exclude as an outlier the point denoted JM: If we ignore that point, clearly there is a better fitting best
fitting line. Since the context supports the decision to consider JM as an outlier, now Izumi eyeballs a
best fitting line with that point excluded, and generates figure 6.

Notice, as does Izumi, that the fit is better than in figure 5; in fact, Izumi created a composite, showing
both lines (figure 7) to drive home this observation.
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Figure 5: 2012-2013 Girls Basketball Data
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Figure 6: Girls Basketball Data, Outlier Removed
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Figure 7: 2012-2013 Girls Basketball Data
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Using Linear Models to Solve Problems

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting
the slope and intercept.For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr
as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant
height. 8.SP.3

In the preceding section we “modeled” bivariate data (X,Y) with a “best fitting line.” What can our line suggest to
us, regarding the true relationship between random variables X and Y? First, let’s be careful about this question:
we don’t know the true relation; we don’t even know if there is a relation. So the question really is: what does
the best fitting line allow us to conclude about our relation, and can we justify those conclusions with scientific
arguments. Let’s return to our good friend, Izumi, who is wrestling with these issues in a specific context.

Example 7.

Izumi notes that her lines of best-fit have slopes consistent with her original scatter plot assessments:
The Field Goals Made vs. Field Goals Attempted plot suggested a positive linear association between
her variables, and her line of best fit has a positive slope (see figure 4 above) ; likewise the negative
association between the variables of her Rebound vs. Assists scatter plot is reflected by the negative
slope of her best-fit line (see figure 7). Izumi realizes that she can calculate the slopes of her lines and
make quantified statements about her variables.

As Izumi has already learned how to compute the slope of a line and locate the line’s y-intercept, she
approximates the following equation for her field goal line: Y = 0.41X − 3.4. Izumi thinks about what
this means and concludes, “My line of best fit suggests that approximately each additional shot that a
basketball player at my school attempts during a game is associated with a roughly 41% increase in
the number of her made field goals for the season. Of course, this doesn’t say anything about a given
individual player; it just describes my data in general. It gives me a good guess at what I might expect
from a random player, but I can’t be certain.” Izumi continues to think about her equation, focusing on
the y-intercept of (0,−3.4). “Hmm, speaking of making guesses, my line would predict that a random
player who had zero field goal attempts would have made −3.4 of them! That’s ridiculous! It just goes
to show that my linear model (a linear equation describing a relationship between variables, informed
by observations) has limitations. While my model may make reasonable predictions for numbers near
the range of my data, it may not make sense for extremes.”

As Izumi continues to think more deeply about what this association might be telling her, she realizes,
“While it makes sense that a higher number of field goals made necessarily means that at least that
number of field goals were attempted, it is interesting that, for any given person in general, the number
of attempted field goals does not necessarily cause the number of made field goals to be a certain number.
Instead, all that I can say is that my data suggest an association between the two variables. For example,
anybody can throw the basketball in an attempt to make a field goal, but it’s the player’s skill (and
perhaps the defense’s lack of skill?) that actually causes the ball to go into the basket.”

After patting herself on the back for recognizing the difference between causation and association, Izumi
turns her attention to the Rebounds vs. Assists lines of best fit. She calculates the slopes and intercepts
for both the red (including the outlier, Juanita Martinez) and the blue (omitting the outlier) lines, and
calculates the equations of those lines.

“Interesting,” Izumi thinks. “If I omit the outlier, then my scatter plot suggests a stronger negative
association between assists and rebounds than if I were to include the outlier. Specifically, if I include
Juanita, then my linear model suggests that each additional assist is associated with a 92% decrease in
that player’s number of rebounds. However, if I omit Juanita, then my linear model suggests that each
additional assist is associated with a 140% decrease in that player’s rebounds! ”

After thinking about the slopes of her lines in the context of her experiment, Juanita begins to think
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about the y-intercepts of her linear models. “If my red line were a reasonable model describing the
relationship between rebounds and assists, then a reasonable expectation to have regarding a player who
made zero assists for the season would be that the player made 138 rebounds. If my blue line were a
reasonable model, then I might venture the guess that a player who makes zero assists would have made
172 rebounds for the season. While these numbers are predicted by my respective linear models, the
usefulness is not clear to me, because I’ve never known a player to have zero assists for an entire season.
But it makes for an interesting thought! Come to think of it, if a player has zero assists, then that player
likely warmed the bench a lot more than she actually played, so it seems more reasonable to guess that
she would have very few rebounds. Gee, it sure is important to continue to think critically, engage my
brain, and exploit my knowledge of basketball while I analyze my data!”

Section 6.3: Analyzing Bivariate Categorical Data Using Two-way Frequency Tables

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies
and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two
categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns
to describe possible association between the two variables.For example, collect data from students in your class
on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is
there evidence that those who have a curfew also tend to have chores? 8. SP.4

In the previous sections, our random variables have been quantitative. Scatterplots provide a natural way of
visualizing bivariate quantitative data, because each real-valued realization of each quantitative random variable
can be plotted on a number line (and thus a real-valued ordered pair can be plotted in the Cartesian coordinate
plane). In contrast, this section investigates patterns of association between categorical variables, which are
characterized by their qualitative nature (recall Section 6.1). Scatterplots are not useful for categorical bivariate
data since categorical data cannot necessarily be ordered on a number line in any meaningful way. For example,
consider the categorical variable “reptiles of Washington county, Utah”. A few realizations of this categorical
variable include “Desert Tortoise”, “Chuckwalla”, and “Western Rattlesnake”. How sensible is it to plot these
variables on a number line, given that there is no natural “order” affiliated with them? In short, number lines are
reserved for numbers, so we need a to take a new approach to analyzing categorical data.

Two-Way Frequency Tables

Before we consider visual representations of bivariate categorical data, we first discuss a convenient way of sum-
marizing such data: The two-way frequency table. The table is “two-way” because each bivariate datum is com-
posed of an ordered pair of realizations from two categorical random variables. For example, a datum might
be something like the ordered pair (female, non-smoker), or perhaps (green eyes, brown hair), or maybe (8th
grader, basketball). The table is a “frequency” table because the cell entries count the number of subjects (i.e., the
frequency of data points) that fall into each combination of categories. Consider the following example.

Example 8.

The Utah Fish and Wildlife Service has collected data regarding the protective status (“endangered”,
“threatened”, “candidate”, and “proposed/petitioned”) of various Utah species (mammals, birds, rep-
tiles, fishes, insects, snails, and flowering plants) with which the Utah Ecological Services is concerned.
As of April 2013, the agency reported the following data in

www.fws.gov/utahfieldoffice/endspp.html

organized in a two-way frequency table. The first two categories are the protected categories, the cate-
gory “candidate” includes those species that the Service has decided to consider for explicit protection,
and the category “proposed/petitioned” consists of species brought to the attention of the Service by
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other groups. These data include only species that have both a protective status and are of interest to the
Utah Ecological Services Field Office, disregarding all Utah species that do not have such status.

Endangered Threatened Candidate Proposed
Mammal 1 2 0 1
Bird 2 1 2 1
Reptile 0 1 0 0
Fish 7 2 1 0
Insect 0 0 0 1
Snail 1 0 0 0
Flowering PLant 11 13 6 4

Here, each datum is an ordered pair realization of the bivariate categorical random variable of the form
(species type, protective status), such as (fish, threatened). Each cell of this two-way frequency table
displays the frequencies (counts) of each possible combination of variables that are observed. For ex-
ample, there is one mammal species with an “endangered” status, two mammal species with a status of
“threatened”, and six flowering plant species that are “candidates” for being granted a protective status.

In general, a two-way frequency table is designed as follows:

Categorical Random Variable #2

Realization A Realization B Realization C
. . .

of Variable #2 of Variable #2 of Variable #2

C
at

eg
or

ic
al

R
an

do
m

Va
ri

ab
le

#1 Realization A Frequency of Frequency of Frequency of
. . .

of Variable #1 (A1, A2) (A1, B2) (A1,C2)

Realization B Frequency of Frequency of Frequency of
. . .

of Variable #1 (B1, A2) (B1, B2) (B1,C2)

Realization C Frequency of Frequency of Frequency of
. . .

of Variable #1 (C1, A2) (C1, B2) (C1,C2)
...

...
...

...
. . .

We next give a simpler, fictional example to demonstrate the power of the two-way frequency table in the 8th
grade setting.

Example 9.

Carlos enjoys spending time with his friends. He feels sad when one of his friends cannot hang out with
him. Often when a friend cannot hang out, it is because the friend either cannot stay out late at night,
or the friend is busy doing chores at home. Carlos notices that it tends to be the same group of friends
who have curfews on school nights who also have chores to do at home. He wonders, “Do students at
my school, in general, who have chores to do at home tend to also have curfews at night?”

Carlos decides to conduct an experiment to help suggest an answer to his question. He randomly surveys
52 students at his school, asking each student if s/he has a curfew and if s/he has to do household
chores. To review some vocabulary, notice that Carlos’s experiment is to record the responses of the 52
randomly selected students; the two categorical random variables of interest are “curfew status” (which
has realizations “has curfew” and “does not have curfew”) and “chores status” (which has realizations
“has chores” and “does not have chores”). It is crucial that every subject in Carlos’s study falls into
exactly one category of each variable, that is, one cannot both have chores and not have chores.
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Carlos observes that of the 52 students he surveyed, 31 have curfews and 35 have chores to do. Of the
31 students who have curfews, 26 also have chores to do. He summarizes the breakdown of his data in
the following two-way frequency table:

Has Curfew No Curfew
Has Chores 26 9
No Chores 5 12

Notice how Carlos organizes his information: The realizations of the “curfew status” variable are the
columns of the table; the realizations of the “chores status” variable are the rows of the table. Also
notice that we can calculate the marginal frequencies (the count of the occurrence of one variable at a
time).

Has Curfew No Curfew
Has Chores 26 9 35
No Chores 5 12 17

31 21 52

We see explicitly that there are 35 total students surveyed to have chores and there are 17 total who have
no chores, as we take the total across the rows. Similarly, we see that there are 31 total students with
curfews and 21 without curfews. Furthermore, note that the sums of each set of marginal frequencies
must equal the total number of students surveyed: 35 + 17 = 52 and, likewise, 31 + 21 = 52.

It is always the case that the sum the marginal frequencies of a given variable equals the total number of subjects,
so adding marginal frequencies provides a useful check for mistakes. As we will soon see, marginal frequencies
help us answer important questions about our data. Let’s get one more example under our belt before moving on
to the interpretation of two-way frequency tables.

Example 10.

Emina loves to eat tomatoes from her garden in Salt Lake City. She asked her friend Renzo, “Don’t
you just love tomatoes?” Renzo crinkled his nose and replied, “Ew, tomatoes gross me out! When I
see them in the grocery store, I just keep on walking.” Renzo’s response prompted Emina to think, “I
don’t buy tomatoes at the grocery store either, because I grow them in my garden. The tomatoes from
my garden are delicious, whereas grocery story tomatoes look less appealing to me. I wonder if there is
an association between enjoying tomatoes and having a garden at home.”

Emina surveys 100 randomly-selected Salt Lake City vegetable-eating residents and asks each of them
two questions: 1. Do you primarily obtain your vegetables at the grocery store (including food pantry),
the farmer’s market, or your home garden? 2. Do you like tomatoes? Emina summarizes her results in
the following table:

Grocery Store Farmer’s Market Home Garden
Likes Tomatoes 50 4 12
Dislikes Tomatoes 30 1 3

Emina wonders if her data suggest an association between enjoying tomatoes and having a garden, but
she’s not yet sure how to use her data to investigate this question.

Making and Interpreting Two-Way Relative Frequency Tables

In this section, we transform our frequency tables into relative frequency tables, which often help us interpret
data. A relative frequency refers to the ratio of the frequency of a particular realization of a bivariate categorical
variable to the total number of observations. In other words, a relative frequency is a number between 0 and 1
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(inclusive), commonly represented by a fraction, decimal, or percent. As a result, relative frequencies are useful in
discussions of probabilities and thus interpretations of bivariate categorical data. We explain further by example,
beginning with the construction of relative frequency tables, followed by their interpretation.

Example 11.

Recall Carlos’s data regarding chores and curfew, specifically his two-way frequency table containing
the marginal frequencies, copied below:

Frequency Table Has Curfew No Curfew
Has Chores 26 9 35
No Chores 5 12 17

31 21 52

The relative frequency table below was constructed from the table above.

Frequency Table Has Curfew No Curfew

Has Chores 26
52 = 0.50 9

52 ≈ 0.17 0.05 + 0.17 ≈ 0.67

No Chores 5
52 ≈ 0.096 12

52 ≈ 0.23 0.096 + 0.23 ≈ 0.33

0.50 + 0.096 ≈ 0.06 0.17 + 0.23 = 0.40 1

Note further that each pair of marginal relative frequencies necessarily have a sum of 1. Carlos can
use his relative frequency table to draw conclusions such as, “Of the 52 randomly-selected students I
surveyed, 67% of them have chores assigned to them at home, and about 60% of the students surveyed
have a curfew.” Carlos continues, “Perhaps the most striking observation to be made is that the bulk of
students I surveyed (50%) fall into the category of both “Has Curfew” and “Has Chores”; the second-
most-popular category is both “No Curfew” and “No Chores”. This is interesting because it suggests an
association between having a curfew and also having chores to do at home. That is, my survey suggests
that students who have curfews also tend to have chores assigned to them.” Carlos then used his relative
frequency table to construct visual representations of his data, shown below (one with categories side-
by-side, the other stacked).

[] Has Curfew No Curfew
0

10

20

Has Chores
No Chores

[] Has Curfew No Curfew
0

10

20

30 Has Chores
No Chores

Carlos’s Data

Carlos constructed these graphs so that 50% of the cumulative bar area would indicate data falling under
the “Has-chores-and-Has-Curfew” category, 23% would fall under the “No-Chores-and-No- Curfew”
category, 17% would fall under the “Has-Chores-but-No-Curfew” category, and about 10% would fall
under the “No-Chores-but-Has-Curfew” category. Such graphical representations often make it easy
to visually inspect associations between variables. Since the vast majority of the “Has Curfew” bar is
darkly shaded (indicating these subject also have chores), while the majority of the “No Curfew” bar is
lightly shaded (indicating subjects who do not also have chores), the association is visually depicted.
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Example 12.

Recall the Utah Fish and Wildlife Service data from Example 8. To help us create a two-way relative
frequency table, we again first include the marginal frequencies to our original frequency table.

Frequency Table Endangered Threatened Candidate Proposed
Mammal 1 2 0 1 4
Bird 2 1 2 1 6
Reptile 0 1 0 0 1
Fish 7 2 1 0 10
Insect 0 0 0 1 1
Snail 1 0 0 0 1
Flowering Plant 11 13 6 4 34

22 19 9 7 57

Check that the following relative frequency table can be constructed from the above two-way frequency
table. Note that the relative frequencies can be expressed in fraction, decimal, or percent form, which
provides an opportunity for students to review and practice such concepts.

Realative Endangered Threatened Candidate Proposed
Frequency Table
Mammal 1/67 2/57 0 1/57 4/57
Bird 2/57 1/57 2/57 1/57 6/57
Reptile 0 1/57 0 0 1/57
Fish 7/57 2/57 1/57 0 10/57
Insect 0 0 0 1/57 1/57
Snail 1/57 0 0 0 1/57
Flowering Plant 11/57 13/57 6/57 4/57 34/57

22/57 19/57 9/57 7/57 57/57=1

From the above chart, we can easily answer questions such as, “What percent of species with protective
status in Utah are mammals?” Here, the marginal relative frequency of 4/57 tells us that only about
7% are mammals. One may ask why there are relatively few animals (mammals through snails) given
protective status (about 40% of those with status) than flowering plants (about 60%). Perhaps the Fish
and Wildlife Service has more of an incentive to classify plants than animals? Perhaps it is plants about
which it is easier to collect data than animals which scurry about? Other questions one may be inspired
to ask about these data may come from noting that, of the animals with protective status, the fish and
birds far outnumber the snails and insects (16/57 and 2/57, respectively). Perhaps the Fish and Wildlife
Service is more concerned with species of recreational interest (e.g., fishing and hunting)? Or perhaps
there are biological or ecological reasons for the discrepancies?

Example 13.

Recall the fictional Emina and her tomato garden (Example 6.5.1c). Emina summarizes her data in the
following relative frequency table and stacked bar graphs.

Frequency Table Grocery Store Farmer’s Market Home Garden
Likes Tomatoes 0.50 0.04 0.12 0.66
Dislikes Tomatoes 0.30 0.01 0.03 0.34

0.80 0.05 0.15 1.00

Emina quickly sees from her relative frequency table that the majority (80%) of the vegetable-eating
people she surveyed purchase most of their veggies at a grocery store, and that only 15% of those
surveyed mostly eat veggies from their gardens. “What’s most interesting to me,” thinks Emina, “is that
even though a small percentage of people surveyed use their gardens as their main vegetable source, of
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those 15%, a whopping 12 out of 15 people like tomatoes! That is, of those who have a home garden as
their main veggie source, 80% (12/15) of them like tomatoes. This is a stark contrast with the grocery-
shoppers: Of the 80% of people surveyed who buy most of their veggies at the grocery store, only 50
out of 80 like tomatoes, or just 62.5%. So it looks like there could be a positive association between
having a home garden and liking the taste of tomatoes. I wonder if this means tomatoes are tastier out
of a home garden than the store. Maybe I should offer Renzo a tomato from my garden....” Emina
continues to think about her study results, and notices that 4 out of 5 people (also 80%) who obtain
most of their veggies from the farmer’s market also enjoy tomatoes. “Hmm. Eating tomatoes from a
farmer’s market is very similar to eating tomatoes out from a home garden, since the farmer’s market
produce is grown locally. Maybe I should pool these data together, since they’re arguably telling me the
same information about locally grown food.” Emina continues to think deeply about her data, and after
making the following graphs, concludes “Regardless, the ratios of darkly shaded (likes tomatoes) to
lightly shaded (dislikes tomatoes) areas of individual bars on my stacked bar graph indicates that there
is a positive association between locally grown produce and the enjoyment of tomatoes.”
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Chapter 7
Rational and Irrational Numbers

In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by
recalling how the integers and then the rational numbers are associated to points in the line. Having associated a
point on the real line to every rational number, we ask the question, do all points correspond to a rational number?
Recall that a point on the line is identified with the length of the line segment from the origin to that point (which
is negative if the point is to the left of the origin). Through constructions (given by “tilted” squares), we make an
observation first made by the Pythagorean society 2500 years ago that there are lengths (such as the diagonal of a
square with side length 1) that do not correspond to a rational number. The construction produces numbers whose
squares are integers; leading us to introduce the symbol

√
A to represent a number whose square is A. We also

introduce the cube root 3
√

V to represent the side length of a cube whose volume is V . The technique of tilted
squares provides an opportunity to observe the Pythagorean theorem: a2 + b2 = c2, where a and b are the lengths
of the legs of a right triangle, and c is the length of the hypotenuse.

In the next section we return to the construction of a square of area 2, and show that its side length (
√

2) cannot
be equal to a fraction, so its length is not a rational number. We call such a number an irrational number. The
same argument works for

√
5 and other lengths constructed by tilted squares. It is a fact that if N is a whole

number, either it is a perfect square (the square of an integer), or
√

N is not a quotient of integers; that is
√

N is
an irrational number.

In the next section we turn to the question: can we represent lengths that are not quotients of integers, somehow by
numbers? The ancient Greeks were not able to do this, due mostly to the lack of an appropriate system of express-
ing lengths by their numerical measure. For us today, this effective system is that of the decimal representation of
numbers (reviewed in Chapter 1 of seventh grade).

We recall from grade 7 that a rational number is represented by a terminating decimal only if the denominator is a
product of twos and fives. Thus many rational numbers (like 1/3,1/7, 1/12,...) are not represented by terminating
decimals, but they are represented by repeating decimals, and similarly, repeating decimals represent rational
numbers. We now view the decimal expansion of a number as providing an algorithm for getting as close as
we please to its representing point on the line through repeated subdivisions by tenths. In fact, every decimal
expansion represents a point on the line, and thus a number, and unless the decimal expansion is terminating or
repeating, it is irrational.

The question now becomes: can we represent all lengths by decimal expansions? We start with square roots, and
illustrate Newton’s method for approximating square roots: Start with some reasonable estimate, and follow with
the recursion

anew =
1
2

(
aold +

N
aold

)
.

Through examples, we see that this method produces the decimal expansion of the square root of N to any required
degree of accuracy. Finally, we point out that to do arithmetic operations with irrational as well as rational
numbers, we have to be careful: to get within a specified number of decimal points of accuracy we may need
much better accuracy for the original numbers.
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Section 7.1. Representing Numbers Geometrically

First, let us recall how to represent the rational number system by points on a line. With a straight edge, draw a
horizontal line. Given any two points a and b on the line, we say that a < b if a is to the left of b. The piece of the
line between a and b is called the interval between a and b. It is important to notice that for two different points a
and b we must have either a < b or b < a. Also, recall that if a < b we may also write this as b > a.

Pick a point on a horizontal line, mark it and call it the origin, denoted by 0. Now place a ruler with its left end at
0. Pick another point (this may be the 1 cm or 1 in point on the ruler) to the right of 0 and denote it as 1.We also
say that the length of the interval between 0 and 1 is one (per one unit). Mark the same distance to the right of 1,
and designate that endpoint as 2. Continuing on in this way we san associate to each positive integer a point on
the line. Now mark off a succession of equally spaced points on the line that lie to the left of 0 and denote them
consecutively as −1, −2, −3, . . . . In this way we can imagine all integers placed on the line.

We can associate a half integer to the midpoint of any interval; so that the midpoint of the interval between 3 and
4 is 3.5, and the midpoint of the interval between −7 and −6 is −6.5. If we divide the unit interval into three equal
parts, then the first part is a length corresponding to 1/3, the first and second parts correspond to 2/3, and indeed,
for any integer p, by putting p copies end to and on the real line (on the right of the origin is p > 0, and on the
left if p < 0), we get to the length representing p/3. We can replace 3 by any positive integer q, by constructing a
length which is one qth of the unit interval. In this way we can identify every rational number p/q with a point on
the horizontal line, to the left of the origin if p/q is negative, and to the right if positive.

The number line provides a concrete way to visualize the decimal expansion of a number. Given, say, a positive
number a, there is an integer N such that N ≤ a < N + 1. This N is called the integral part of a. If N = a, we are
done. If not, divide the interval between N and N + 1 into ten equal parts, and let d1 be the number of parts that
fit in the interval between N and a. This d1 is a digit (an integer between (and possibly one of) 0 and 9). This is
the tenths part of a, and is written N.d1. If N.d1 = a, we are through. If not repeat the process: divide the interval
between N.d1 and N.(d1 + 1) into ten equal parts, and let d2 be the number of these parts that fit between N.d1 and
a. This is the hundredths part of a, denoted N.d1d2. Continuing in this way, we discover an increasing sequence of
numerical expressions of the form N.d1d2 · · · that get closer and closer to a, thus providing an effective procedure
for approximating the number a. As we have seen in grade 7, this process may never (meaning “in a finite number
of steps”) reach a, as is the case for a = 1/3, 1/7 and so on.

Now, instead of looking at this as a procedure to associate a decimal to a number, look at it as a procedure to
associate a decimal to a length on the number line. Now let a be any point on the number line (say, a positive
point). The same process associates a decimal expansion to a, meaning an effective way of approximating the
length of the interval from 0 to a by a number of tenths of tenths of tenths (and so on) of the unit interval. We
begin this discussion by examining lengths that can be geometrically constructed; leading us to an answer to the
question: are there lengths that cannot be represented by a rational number? To do this, we need to move from the
numerical representation of the line to the numerical representation of the plane.

Using the number line created above, draw a perpendicular (vertical) line through the origin and use the same
procedure as above with the same unit interval. Now, to every pair of rational numbers (a, b) we can associate a
point in the plane: Go along the horizontal (the x-axis) to the point a. Next, go a (directed) length b along the
vertical line through a . This is the point (a, b).

Example 1.

In Figure 1 the unit lengths are half an inch each. To the nearest tenth (hundredth) of an inch, approxi-
mate the lengths AB, AC, BC.

Solution. We use a ruler to approximate the lengths. There will be a scale issue: the length of a side
of a box may not measure half an inch on our ruler. After calculating the change of scale, one should
find the length of AC to be about 3.05 in.
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Figure 1

Now, it is important to know that, by using a ruler we can always estimate the length of a line segment by a fraction
(a rational number), and the accuracy of the estimate depends upon the detail of our ruler. The question we now
want to raise is this: can any length be described or named by a rational number?

The coordinate system on the plane provides us with the ability to assign lengths to line segments. Let us review
this through a few examples.

Example 2.

In Figure 2 we have drawn a tilted square (dashed sides) within a horizontal square. If each of the small
squares bounded in a solid line is a unit square (the side length is one unit), then the area of the entire
figure is 2× 2 = 4 square units. The dashed, tilted square is composed of precisely half (in area) of each
of the unit squares, since each of the triangles outside the tilted square corresponds to a triangle inside
the tilted square. Thus the tilted square has area 2 square units. Since the area of a square is the square
of the length of a side, the length of each dashed line is a number whose square is 2, denoted

√
2.

Figure 2

We will use this symbol
√

A (square root) to indicate a number a whose square is A: a2 = A. Since the square
of any nonzero number is positive (and

√
0 = 0),

√
A makes sense only if A is not negative. Since 22 = 4, 32 =

9, 42 = 16, 52 = 25, the integers 4, 9, 16, 25 have integers as square roots. A positive integer whose square root s
a positive integer is called a perfect square. For other numbers (such as 2, 3, 5, 6, . . . ), we still have to find a way
to calculate the square roots. This strategy, of tilted squares, gives a way of constructing lengths corresponding to
square roots of all whole numbers, as we shall now illustrate.

Example 3.
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Figure 3

In Figure 3 the large square has side length 3 units, and thus area of 9 square units. Each of the triangles
outside the tilted square is a 1 × 2 right triangle, so is of area 1. Thus the area of the tilted square is
9 − 4 = 5, and the length of the sides of the tilted square is

√
5.

Figure 4

By the same reasoning: the large square in Figure 4 is 7 × 7 so has area 49 square units. Each triangle
outside the tilted square is a right triangle of leg lengths 3 and 4, so has area 6 square units. Since there
are four of these triangles, this accounts for 24 square units, and thus the area of the tilted triangle is
49 − 24 = 25 square units. Since 25 = 52, the side of the tilted square has length 5 units. That is,√

25 = 5.

Example 4.

As we shall see in more detail, these examples generalize (with a little ingenuity) to a formula for
the length of the hypotenuse of a right triangle, given the lengths of its legs (this is the Pythagorean
Theorem). Here we demonstrate this formula using tilted squares. For any two lengths a and b, draw a
square of side length a + b as shown in Figure 5. Now draw the dashed lines as shown in that figure.

The figure bounded by the dashed lines is a square; denote its side length by c. Then the area of the
square is c2. Each of the triangles is a right triangle of leg lengths a and b and hypotenuse length c. Now,
move to Figure 6 which isubdivides the a + b-sided square in a different configuration: the bottom left
corner is filled with a square of side length b, and the upper right corner, by a square of side length a.
The rest of the big square of Figure 6 is a pair of congruent rectangles. By drawing in the diagonals of
those rectangles as shown, we see that this divides the two rectangles into four triangles, all congruent
to the four triangles of Figure 5. Thus what lies outside these triangles in both figures has the same area.
But what remains in Figure 5 is a square of area c2, and what remains in Figure 6 are the two squares of
areas a2 and b2. This result is:
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The Pythagorean Theorem:
a2 + b2 = c2

for a right triangle whose leg lengths are a and b and whose hypotenuse is of length c.

This theorem allows us to find the lengths of the sides of tilted squares algebraically. For example, the tilted square
in Figure 1 has side length c where c is the length of the hypotenuse of a right triangle whose leg lengths are both
1:

c2 = 12 + 12 = 2 ,

so c =
√

2. Similarly for Figure 2: c2 = 12 +22 = 5, so c =
√

5. For Figure 3, we calculate c2 = 32 +42 = 9+16 =

25, so c =
√

25 = 5.

Section 7.2 Solutions to Equations Using Square and Cube Roots

Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where
p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect
cubes. 8.EE.2, first part.

In the preceding section we introduced the symbol
√

A to designate the length of a side of a square of area A.
Similarly, the side length of a cube of volume V as 3√V (called the cube root of V). Another way of saying this is
that

√
A is the solution of the equation x2 = A and 3√V is the solution of the equation x3 = V . We also defined a

perfect square as an integer whose square root is an integer. Similarly an integer whose cube root is an integer is
a perfect cube. Here is a table of the first few perfect squares and cubes.

Number 1 2 3 4 5 6 7 8 9
Square 1 4 9 16 25 36 49 64 81
Cube 1 8 27 64 125 216 343 512 729

For numbers that are not perfect squares, we can sometimes use factorization to express the square root more
simply.
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Example 5.

a. Since 100 is the square of ten, we can write
√

100 = 10. But we could also first factor 100 as the
product of two perfect squares:

√
100 =

√
4 · 25 =

√
4 ·
√

25 = 2 · 5 = 10.

b. Similarly,
√

729 =
√

9 · 81 =
√

9 ·
√

81 = 3 · 9 = 27. Also, since 729 = 272, and 33 = 27,

3√
729 =

3√
27 · 27 =

3√
27 ·

3√
27 = 3 · 3 = 9 .

c. Of course not every number is a perfect square, but we still may be able to simplify:
√

72 =√
36 · 2 =

√
36 ·
√

2 = 6
√

2.

d.
√

32 =
√

4 · 4 · 2 = 4
√

2.

Similarly, we can try to simplify arithmetic operations with square roots:

e.
√

6
√

12 =
√

6
√

6 · 2 =
√

6
√

6
√

2 = 6
√

2.

f.
√

2 +
√

8 =
√

2 +
√

4
√

2 =
√

2 + 2
√

2 = 3
√

2.

The following example goes beyond the eighth grade standards, but is included to emphasize to students that the
rules of arithmetic extend to expressions with root symbols in them.

Example 6.

a. Solve: 3
√

x = 39.

Solution. Dividing both sides by 3, we have the equation
√

x = 13. Now squaring both sides,
we get x = 132 = 169.

b. Solve: 5
√

x +
√

x = 24.

Solution. 5
√

x +
√

x = 6
√

x,, leading to the equation 6
√

x = 24,simplifying to
√

x = 4.
Squaring, we get the answer: x = 42 = 16.

c. Which is greater: 14 or 10
√

2?

Solution. We want to determine if the statement 14 < 10
√

2 is true or false. We could approx-
imate

√
2, but the truth of our answer depends upon the accuracy of our approximation. A better

strategy is to square both sides, since we know that squaring two positive numbers preserves the
relation between them. So our test becomes: is this true: 142 < 100(2). Since 142 = 196, the
answer is: yes, this is true.

d. Is there an integer between 4
√

3 and 5
√

2?

Solution. To solve this, we need to square both sides and ask: is there a perfect square between
these numbers. Now (4

√
3)2 = 48 and (5

√
2) = 50, and the only integer between these two is 49.

Since 49 = 72, the answer is “yes: 7”.
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Section 7.3. Rational and Irrational Numbers

The Rational Number System

Know that numbers that are not rational are called irrational. Understand informally that every number has
a decimal expansion; for rational numbers, show that the decimal expansion repeats eventually, and convert a
decimal expansion which repeats eventually into a rational number.8. NS. 1.

Know that
√

2 is irrational. 8. EE. 2, second part.

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approx-
imately on a number line diagram, and estimate the value of expressions (e.g.,π2). For example, by truncating
the decimal expansion of

√
2, show that

√
2 is between 1 and 2, then between 1.4 and 1.5, and explain how to

continue on to get better approximations.8.NS.2

The discussion about the relationship of numbers and lengths (summarized at the beginning of section 7.1), and
their representation as decimals was a significant part of seventh grade mathematics. We now summarize that
discussion. The decimal representation of rational numbers is the natural extension of the base ten place-value
representation of whole numbers. Decimals are constructed by placing a dot, called a decimal point, after the
units’ digit and letting the digits to the right of the dot denote the number of tenths, hundredths, thousandths, and
so on. If there is no whole number part in a given numeral, a 0 is usually placed before the decimal point (for
example 0.75).

Thus, a terminating decimal is another representation of a fraction whose denominator is not given explicitly, but
is understood to be an integer power of ten. Decimal fractions are expressed using decimal notation in which the
implied denominator is determined by the number of digits to the right of the decimal point. Thus for 0.75 the
numerator is 75 and the implied denominator is 10 to the second power (100), because there are two digits to the
right of the decimal separator. In decimal numbers greater than 1, such as 2.75, the fractional part of the number
is expressed by the digits to the right of the decimal value, again with the value of .75, and can be expressed in a
variety of ways. For example,

3
4

=
75

100
=

7
10

+
5

100
= 0.75 ,

11
4

= 2
3
4

= 2 +
75

100
= 2 +

7
10

+
5

100
= 2.75 .

In seventh grade we observed that the decimal expansion of a rational number always either terminates after a
finite number of digits or eventually begins to repeat the same finite sequence of digits over and over. Conversely
such a decimal represents a rational number. First let’s look at the case of terminating decimals.

Example 7.

Convert 0.275 to a fraction.

Solution.
0.275 =

2
10

+
7

100
+

5
1000

=
2

10
+

7
102 +

5
103 .

Now, if we put these terms over a common denominator, we get

2(102) + 7(10) + 5
103 =

275
103 .

In general, a terminating decimal is a sum of fractions, all of whose denominators are powers of 10. By multiplying
each term by 10/10 as many times as necessary, we can put all terms over the same denominator. In the same way,
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0.67321 becomes
67321

105 ,

and
0.0038 =

3
1000

+
8

10000
=

38
10000

.

So, we see that a terminating decimal leads to a fraction of the form A/10e where A is an integer and e is a positive
integer. But we can make an even stronger statement, as follows

Notice that the expression A/10e is not necessary in lowest terms:

275
103 =

5 · 5 · 11
2 · 2 · 2 · 5 · 5 · 5

=
11

22̇ · 2 · 5
=

11
40

,

and all we can say about this denominator is that it a product of 2’s and 5’s. But this is enough to guarantee
that the fraction has a terminating decimal representation. In general, when A/10e is put into simplest terms, the
denominator will still be a product of 2’s and/or 5’s so the fraction must have a terminating decimal representation.

Example 8.

a) 25 = 52, so we should expect that 1/25 can be represented by a terminating decimal. In fact, if we
multiply by 1 in its disguise as 2×2

2×2 we get:

1
25

=
4

100
= 0.04 .

b) Consider 1/200. Since 200 = 23 · 52, we lack a factor of 5 in the denominator to have a power of 10.
We fix this by multiplying the fraction by 1 in the form 5

5 to get 5/1000 = .005.

In short, a fraction p/q can be written as a terminating decimal if q is a factor of a power of 10. Otherwise put

A terminating decimal leads to a fraction whose denominator is a product of 2’s and/or 5’s, and
conversely, any such fraction is represented by a terminating decimal.

What about a fraction of the form p/q, where q is not a product of 2’s and/or 5’s? In sixth grade we learned that
by long division (of p by q) we can create a decimal expansion for p/q to as many places as we please. In seventh
grade we went a little further. Since each step in the long division produces a remainder that is an integer less than
q, after at most q steps we must repeat a remainder already seen. From that point on each digit of the long division
repeats, and the process continues indefinitely in this way. For example, 1/3 = 0.3333 . . . for as long as we care.
For the division of 10 by 3 produces a quotient of 3 with a remainder of 1, leading to a repeat of the division of 10
by 3.

Example 9.

Find the decimal expansion of 157/660.

Solution. Dividing 157 by 660 gives a quotient of 2 and a remainder of 25. Divide 25 by 660 to get a
quotient of 0.03 and a remainder of 5.200. So far we have

157
660

= 0.23 +
5.2
660

.

Continuing division of the remainder by 660 produces a quotient of 0.007 and a remainder whose nu-
merator is 58. Now division by 660 gives a quotient of .0008 and a remainder whose numerator is 52.
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Since that is what we had in the step that produced a 7, we’ll again get a quotient of 8 and a remainder
of 58. Furthermore, these two steps continue to repeat themselves, so we can conclude that

157
660

= 0.23787878 · · · ,

with the sequence 78 repeating itself as often as we need. This will be written as 157/660 = 0.2378,
where the over line indicates continued repetition.

Example 10.

Find the decimal expansion of 3/11.

Solution. Ignoring decimal points, the first division in the long division is 30 ÷ 11, giving 2 with
a remainder of 8. So, the second division is 80 ÷ 11, giving 7 with a remainder of 3. Then the third
division 30 ÷ 11 is the same as the first, so we have entered the repeating cycle with 27 as the repeating
number. Now take care o fthe decimal point: 3/11 is less than 1 and bigger than 0.1, so the answer is
3/11 = 0.27

We conclude that

The decimal expansion of a fraction is eventually terminating or repeating - that is, after some
initial sequence of digits, there a following set of digits (which may consist of zeroes) that repeats
over and over.

Express Decimals as Fractions

To complete this set of ideas, we show that an eventually repeating decimal represents a fraction.

Example 11.

Let’s start with: 0.33333 . . . , or in short notation 0.3. Let a represent this number. Multiply by 10 to get
10a = 3.3 We then have the two equations:

a = 0.3 .

10a = 3.3

Substitute a for 0.3 in the second equation to get 10a = 3 + a. We solve for a to get a = 1/3. Since
a = 0.3, we conclude that 0.3 = 1/3.

Alternatively, realizing that 3.3 = 3 + 0.3, we could subtract the first equation from the second to get
9a = 3, to conclude that a = 3/9 = 1/3 is the fraction represented by the decimal.

Here’s a more complicated example: Example 12.

Convert 0.234 to a decimal.

Solution. . Set a = 0.234 . Now multiply by 1000, to get these two equations:

a = 0.234 .

1000a = 234 + .234
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The second equation becomes (after substitution) 1000a = 234 + a, from which we conclude: 999a =

234, so a = 234/999, which, in lowest terms, is 26/111. Alternatively, we could subtract the first
equation from the second, getting to 999a = 234, and ultimately the same answer.

Example 13.

We really should be discussing decimals that are eventually repeating, such as 0.2654. First we take care
of the repeating part: let b = 0.54, and follow the method of the preceding examples to get the equation
100b = 54 + b, so b = 54/99 = 6/11 in lowest terms. Now:

0.2654 =
26

100
+ 0.0054 =

26
100

+
0.54
100

=
26

100
+

1
1000

6
11

=
292
1100

=
73

275
.

For a final example, let’s convert 0.23. We have:

0.23 =
2

10
+

1
10

(
1
3

)
=

7
30

.

Expand the Number System

In the preceding, for any point on the line, we have discussed how to get a sequence of terminating decimals that
provide better and better estimates (in fact, each is within one-tenth of the given point than its predecessor). If we
think of a point on the line as blur on the line (as it is in reality), then we can repeat this process until our decimal
expansion is inside the blur, and then indistinguishable from the point of interest. Better optical devices will shrink
the blur, and so we’ll have to apply our process a few more times. Now, in the idealization of the real world that
is the realm of mathematics, this process may never end; and so we envision infinite decimal expansions that
can be terminated at any time to give us the estimate that is as close as we can perceive with out most advanced
optics. Thus the repeating decimals make sense: if we want a decimal approximation of 1/3 that is correct within
one-tenthousandth, we take 0.3333. If we want a decimal approximation correct within 500 decimal points, we
take 0. followed by 500 3’s.

Let us review the operational description of the decimal expansion through measurement: Let a be a point on the
number line. Let N be the largest integer less than or equal to a; that is N ≤ a < N + 1. Now divide the integer
between N and N + 1 into tenths, and let d1 be the number of tenths between N and a. If this lands us right on a,
then a = N + d1/10. If not, divide the interval between N + d1/10 and N + (d1 + 1)/10 into hundredths and let d2
be the number of hundredths below a, so that

N +
d1

10
+

d2

100
≤ a < N +

d1

10
+

d2 + 1
100

.

Now do the same thing with thousandths and continue indefinitely - or at least as far as your measuring device can
take you.

Now, some decimal expansions are neither terminating, nor ultimately repeating, for example

0.101001000100001000001 · · · ,

where the number of 0’s between 1’s continues to increase by one each time, indefinitely. Another is obtained by
writing down the sequence of positive integers right after each other:

0.123456789101112131415 · · · .

Do such expressions really define (ideal) points on the line? This question, in some form or another, has been
around as long as numbers have been used to measure lengths. Today, we know that it is not a question that can be
answered through common sense, or logical deduction, but, as an assertion that is fundamental to contemporary
mathematics, must be accepted as a given (or, in some interpretations, as part of the definition of the line).
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Such decimal expansions that are neither terminating or repeating cannot represent a rational number, so are said
to be irrational. We can continue to make up decimal expansions that are neither terminating nor repeating, and
in that way illustrate more irrational numbers. But what is important to understand is that there are constructible
lengths (like the sides of some tilted squares) that are irrational.

Now, the fact that we are heading for is this: for any whole number N, if N is not a perfect square, then
√

N is not
expressible as a fraction; that is,

√
N is an irrational number. The existence of irrational numbers was discovered

by the ancient Greeks (about 5th century BCE), and they were terribly upset by the discovery, since it was a basic
tenet of theirs that numbers and length measures of line segments were different representations of the same idea.
What happened is that a member of the Pythagorean society showed that it is impossible to express the length of
the side of the dashed square in Figure 2 (

√
2) by a fraction. Here we’ll try to describe the modern argument that

actually proves more:

If N is a whole number then either it is a perfect square or
√

N is irrational.

Another way of making this statement is this: If N is a whole number, and
√

N is rational, then
√

N is also a whole
number. To illustrate why this is so, let’s demonstrate it for N = 2. Suppose that

√
2 is a rational number. Express

it as
√

2 =
p
q in lowest terms (meaning that p and q have no common integral factor). In particular, it cannot be

the case that p and q are both even. Now square both sides of the equation to get

2 =
p2

q2 so that 2q2 = p2 .

This last equation tells us that p2 is even (it has 2 as a factor). But, since the square of an odd number is odd, that
tells us that p must be even: p = 2r for some integer r. Then p2 = 4r2, and putting that in the last equation above
we get

2q2 = 4r2 so that q2 = 2r2 ,

and q is thus also even. This contradicts the statement that 2 = p/q in lowest terms, so we conclude that our original
assumption that

√
2) is equal to a ratio of integers was false. Therefore, since sqrt2 can not be represented as a

ratio of integers, sqrt2 is irrational.The argument for any whole number N that is not a perfect square is similar,
but uses more about the structure of whole numbers (in terms of primes), It might be useful to go into this, but it
is beyond the 8th grade core.

Example 14.

Show that
√

50 is irrational.

Solution. 50 > 72 and 50 < 82, so
√

50 lies between 7 and 8, and thus cannot be an integer. Another
way to see this is to factor 50 as 25 · 2, from which we conclude that

√
50 = 5

√
2, and

√
2 is irrational.

Example 15.

π is another irrational number that is is defined geometrically. How do we give a numerical value to
this number? The ancient Greek mathematician, Archimedes, was able to provide a geometric way of
approximating the value of π. Here we describe it briefly, using its definition as the quotient of the
circumference of a circle by its diameter. In Figure 7, consider the triangles drawn to be continued
around the circle 8 times.

Now measure the lengths of the diameter (5.3 cm) and the lengths of the outer edge of the triangles
shown triangles. The length of the inner one is 2 cm, and of the outer one is 2.3 cm. Now, reproducing
the triangles in each half quadrant, we obtain two octagons, one with perimeter 8 × 2, which is less
than the circumference of the circle and the other with perimeter 8 × 2.3 which is greater than the
circumference of the circle. Since we know the formula C = πD, where C is the circumference of a
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circle, and D its diameter, we obtain

8 × 2 < C = πD = 5.3π and 8 × 2.3 > C = πD = 5.3π .

After division by 5.3, these two inequalities give the estimate: 3.02 < π < 3.47. To increase the accuracy,
we increase the number of sides of the approximating polygon. Archimedes created an algorithm to
calculate the polygon circumferences each time the number of sides is doubled. At the next step (using
a polygon with 16 sides), the procedure produces the estimate 22/7 for π, which has an error less than
0.002.

Figure 7

Approximating the Value of Irrational Numbers

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approx-
imately on a number line diagram, and estimate the value of expressions (e.g., π2). 8.NS.2

Since irrational numbers are represented by decimals that are neither terminating nor repeating, we have to rely
on the definition of the number to find fractions that are close to the irrational number - hopefully as close as we
need the approximation to be. So, as we saw above, Archimedes used the definition of π to find a rational number
(22/7) that is within 1/500 of π. Even better, Archimedes described an algorithm to get estimates that are closer
and closer - as far as we need them to be. But how about square roots?

We know that
√

2 can be represented as the diagonal of a right triangle with leg lengths equal to 1, so we can
measure the length of that diagonal with a ruler. But the accuracy of that measure depends upon the detail in our
ruler. We’d rather have an arithmetic way to find square roots - or, to be more accurate, to approximate them. For
this, we return to the discussion of decimals in 7th grade. There, a method was described that found decimals
that came as close as possible to representing a given length. However, it too, depended upon our capacity to
measure. What we want is a method to approximate square roots, which, if repeated over and over again, gives us
an estimate of the square root that comes as close to the exact length as we need it to be.

Before calculators were available, a method for estimation of square roots was that of trial and error. With calcu-
lators, it is not so tedious - let us describe it.

Example 16.

Approximate
√

2 correct to three decimal places.

Solution. Since 12 = 1 and 22 = 4, we know that
√

2 is between 1 and 2. Let’s try 1.5. 1.52 = 2.25, so
1.5 is too big. Now 1.42 = 1.96 so 1.4 is too small, but not by much: 1.4 is correct to one decimal place.
Let’s try 1.41: 1.412 = 1.9881 and 1.422 = 2.0164. It looks like 1.422 is a little closer, so let’s try 1.416:
1.4162 = 2.005; so we try 1.4152 = 2.002, still a little large, but quite close. To see that we are within
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three decimal places, we check 1.4142 = 1.9994. That is pretty close, and less that 2. To check that
1.414 is correct to three decimal places, we check half an additional point upwards: 1.41452 = 2.0008,
so the exact value of

√
2 is between 1.4140 and 1.4145, so 1.414 is correct to three decimal places.

Example 17.

Gregory wants to put a fence around a square plot of land behind his house of 2000 sq.ft. How many
linear feet of fence will he need?

Solution. His daughter, a member of this class, tells him that the length of a side will be
√

2000, ands
since there are four sides. Gregory will need 4

√
2000 linear feet of fence. He objects that he can’t go to

the lumber yard asking for 4
√

2000 linear feet of fence; he needs a number. His daughter thinks, well
that is a number, but understands that he needs a decimal approximation She says: “First we try to get
close: The square of 30 is 900; so we try 40: it s square is 1600, and 502 = 2500, so our answer is
between 40 and 50. Let’s try 45; since 452 = 2025, we are close.” Gregory says that for his purpose,
this is close enough, but he is curious and asks his daughter if she can do better. “Sure,” she says, and
calculates 442 = 1936, and informs her father that the answer is between 44 and 45 - and maybe closer
to 45. So she calculates the squares of number between 45.5 and 50:

Number Square of number
44.5 1980.25
44.6 1989.16
44.7 1998.09
44.8 2007.04

and concludes that each plot has to have side length between 44.7 feet and 44.8 feet, and much closer to
44.7. so she suggests that he go with 44.72; that is he will need 4 × 44.72 = 178.88 linear feet of fence
in the meantime, his daughter checks: the square of 44.72 (accurate to two decimal points) is 1999.88 -
not bad.

Example 18.

Find the square root of 187 accurate to two decimal places.

Solution. Since 102 = 100, we try 112 = 121, 122 = 144, 132 = 169 and 142 = 196. From
this we conclude that

√
187 is between 13 and 14, and probably a little closer to 14. Next, try 13.7:

13.72 = 187.69, a little too big. Now try 13.65: 13.652 = 187.005; almost there! Now, to be sure we are
correct to 2 decimal points, we calculate 13.642 = 186.05. Since 13.652 is so much closer to 187, we
conclude that 13.65 is the answer, accurate to two decimal places.

Trial and error seems to work fairly well, so long as we start with a good guess, and have a calculator at hand. But,
in the field, the engineer will want a way to do this with a calculator or computer, where the computer does the
guessing. Such a method is called “Newton’s method,” after Isaac Newton, one of the discoverers of the Calculus.
Newton reasoned this way: suppose that we have an estimate a for the square root of N, That is: a2 ∼ N, where
the symbol ∼ means “is close to.” Dividing by a, we have a ∼ N/a, so N/a is another estimate, about as good as
a. He also noticed that a and N/a lie on opposite sides of

√
N: as follows: suppose a <

√
N, so that a2 < N.

Multiply both sides by N, giving Na2 < N2. Now divide both sides by a2 to get:

N <
N2

a2 or
√

N <
N
a
.

Because of this, the average of a and N/a average should be an even better estimate . So he set

a′ =
1
2

(
a +

N
a

)
,

and then repeated the logic with a′, and once again with the new estimate, until the operation of taking a new
average produced the same answer, up to the desired number of decimal places. The amazing fact is that Newton
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showed that this actually works and in a small number of steps, and can be applied to find solutions of a wide
range of numeric problems. Let’s now illustrate inf the following example.

Example 19.

Find the square root of two accurate up to four decimal places.

Solution. We try 1 and 2, getting 12 = 1 and 22 = 4. Now, 2/1 = 2, so according to Newton, we
should now try the average: 1.5. Since 2/(1.5) = 4/3, we next try the new average:

a′ =
1
2

(
1.5 +

4
3

)
=

17
12
− 1.41667 .

This already is a pretty good estimate. Now, let us bring in calculators or a computational program like
Excel so that we can repeat this process until the new estimate is the same as the second. These Excel
calculations (using Newton’s method) are shown in the first table of Figure 8. Our discussion brought us
to the second line (1.416666667 is 17/6 correct to 9 decimal places). The table continues with Newton’s
method, until the estimate (last column) stabilizes. Actually, it stabilized (to four decimal places) in the
third line, but we have continued the calculation, to show that there is no further change. In fact each
step in Newton’s method produces a more accurate estimate, so once we have no change (to the number
of correct decimals we require), there is no need to go further.

Example 20.

Use Newton’s method to find the square root of 5.

Solution. First of all “find the square root of five” is not very meaningful. Using the tilted square
with side lengths 1 and 2, we found the square root of 5 as a length. So, perhaps here wen mean, ”find
the numerical value of the square root of 5.” But as we have already observed,

√
5 is not expressible as

a fraction, so we can’t expect to “find” its value precisely. What we can hope for is to find a decimal
expansion that comes as close as we please to

√
5. So, let us make the question precise: find a decimal

that is an estimate of
√

5 that is correct to 4 decimal places. Let’s go through Newton’s method.

First we see that 2 is a good approximation for
√

5 by an integer, since 22 = 4 and 32 = 9.Now 5/2 = 2.5
is also a good guess, since 2.52 = 6.25. In fact it is what Newton’s method wants us to look at next. The
rest of the computation was done by Excel and is shown in Figure 8. There we see that by the third step
in Newton’s method, we have

√
5 correct to 6 decimal places.

Do we ever get to the place where the “last two approximations” agree perfectly - that is: when have we arrived
at the numerical value of the desired point? Alas, for irrational numbers, the answer is “we never do, but we do
get better and better.” Unless N itself is a perfect square (the square of another integer), we will never arrive at a
decimal expansion that is precisely

√
N. But - and this is all we really need - we can get as close as we want.

Example 21.

Now use Newton’s method to calculate
√

25 and
√

1000.

Solution. The calculation is exhibited in the third and fourth tables of Figure 8. We could also note
that
√

1000 = 10
√

10 = 10
√

2
√

5 and multiply the results of the first two calculations.

Example 22.

It is not necessary that the first guess at the square root is close to the answer - we can start with any
positive number and end up with the estimate we want - it just may take a little longer. To see this, use
Newton’s method to find

√
150, 000, starting with 2 as the first guess. See Figure 9.

We can extend arithmetic relations and operations to irrational numbers since the decimal expansion allows us to
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Figure 8

Square Root of 2 (Example 19)
First estimate: a = 1

Estimate 2/a New Estimate (Average)
1 2 1.5

1.5 1.333333 1.416666667
1.41667 1.411765 1.414215686
1.41422 1.414211 1.414213562
1.41421 1.414214 1.414213562
1.41421 1.414214 1.414213562
1.41421 1.414214 1.414213562
1.41421 1.414214 1.414213562

Square Root of 5 (Example 20)
First estimate: a = 2

Estimate 5/a New Estimate (Average)
2 2.5 2.25

2.25 2.222222 2.236111111
2.23611 2.236025 2.236067978
2.23607 2.236068 2.236067977
2.23607 2.236068 2.236067977
2.23607 2.236068 2.236067977
2.23607 2.236068 2.236067977
2.23607 2.236068 2.236067977

Square Root of 25 (Example 21)
First estimate: a = 1

Estimate 25/a New Estimate (Average)
1 25 13

13 1.923077 7.461538462
7.46154 3.350515 5.406026963
5.40603 4.624468 5.015247602
5.01525 4.984799 5.000023178
5.00002 4.999977 5

5 5 5
5 5 5

Square Root of 1000 (Example 21)
First estimate: a = 25

Estimate 1000/a New Estimate (Average)
25 40 32.5

32.5 30.76923 31.63461538
31.6346 31.61094 31.62277882
31.6228 31.62277 31.6227766
31.6228 31.62278 31.6227766
31.6228 31.62278 31.6227766
31.6228 31.62278 31.6227766
31.6228 31.62278 31.6227766

8MF7-15 ©2014 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.



Square root of 150000 (Example 22)
First estimate: a = 1

Estimate 150000/a New Estimate (Average)
1 150000 75000.5

75000.5 1.999987 37501.24999
37501.2 3.999867 18752.62493
18752.6 7.99888 9380.311905
9380.31 15.99094 4698.151422
4698.15 31.92745 2365.039437
2365.04 63.42389 1214.231663
1214.23 123.5349 668.8832869
668.883 224.2544 446.5688284
446.569 335.8945 391.2316493
391.232 383.4046 387.3181067
387.318 387.2786 387.2983351
387.298 387.2983 387.2983346
387.298 387.2983 387.2983346
387.298 387.2983 387.2983346

Figure 9

get as close as we please to any number.

Example 23.

What is bigger π2 or 10?

Solution. To answer such a question, we need to find a rational number larger than π whose square is
smaller than 10. 3.15 will do, since it is larger than π and 3.152 = 9.9225 < 10.

But we do have to be a little careful: the closeness of approximations changes as we add or multiply them. So, if
a agrees with a0 up to two decimal points, and b agrees with b0 up to two decimal points, we cannot conclude that
a + b or ab agree with a0 + b0 or a0b0 up to two decimal places. Let us illustrate that.

Example 24.

3.16 agrees with
√

10 to two decimal places. But 3.16 × 3.16 = 9.9856, which does not agree with 10
to two decimal places.

Example 25.

Approximate π +
√

2 to three decimal places. Start with the approximations up to four decimal points:
3.1416 and 1.4142, and add: 3.1416+1.4142 = 4.5558, from which we accept 4.556 as the three (not
four) decimal approximation because of the rounding to the fourth place in the original approximations.

For products it is not so easy. Suppose that A and B are approximations to two particular numbers, which we can
denote as A0, B0, Then we have A0 = A + e, B0 = B + e′ where e and e′ are the errors in approximation. For the
product we will have A0B0 = (A + e)(B + e′) = AB + Ae′ + Be + ee′, telling us that the magnitude of the error has
been multiplied by the factors A and B, which may put us very far from the desired degree of accuracy.

Example 26.

Suppose that A and B approximate the numbers 1 and 100 respectively within one decimal point. That
means that

0.95 < A < 1.05 and 99.95 < B < 100.05 .
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When we multiply, we find thatAB could anywhere in the region

94.9525 < AB < 105.0525 ,

thus, as much as 5 units away from the accurate product 100.

To find approximate values for irrational numbers, we have to understand the definition of the number so we can
use it for this purpose. For example, suppose we want to find a number whose cube is 35, correct up to two
decimal places. Start with a good guess. Since 33 = 27 and 43 = 64, we take 3 as our first guess. Since 27
is much closer to 35 than 64, we now calculate the cubes of 3.1, 3.2, 3.3, . . . until we find those closest to 35:
3.13 = 29.791, 3.23 = 32.6768, 3.33 = 35.937. We can stop here, since the last calculated number is larger than
35. Now we go to the next decimal place, starting at 3.3, working down (since 35.937 is closer to 35 than 32.6768:
3.293 = 35.611, 3.283 = 35.287, 3.273 = 34.965. Since the last number is as close as we can get to 35 with two
place decimals, we conclude that 3.27 is correct to two decimal places.
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Chapter 8
Integer Exponents, Scientific Notation and
Volume

We have already introduced the notation x2 for x× x and x3 for x× x× x, and it is easy to see how to extend this to
all positive integers: xn just means that we multiply x by itself n times. So, 26 = 64, 34 = 81 and so forth. Since
we are using whole numbers just to count factors, clearly xm+n = xm × xn: multiplying x to itself m times, and then
n more times is the same as multiplying x by itself m + n times. We then ask the question: can we make sense of
xp for all integers p, so that the usual rules of arithmetic on the exponents apply? The answer is “yes,” and the
exploration of this is the content of the first section of this chapter. We put particular emphasis on the assertion
that x0 = 1 for all numbers x , 0. There are several ways to to see that this is the right definition, but the fact is
that it is simply a consequence of the rules of arithmetic, as we shall show.

In the next section we revisit place value, recalling that when a number is exhibited in place 10 notation, each
place represents a power of ten, we move on to a shorthand for representing numbers, using exponential notation.
Scientific notation is important, not just as a convenience for dealing with very small or very large numbers, but
as a way of understanding “orders of magnitude.” When it is said that phenomenon A is two orders of magnitude
more likely than phenomenon B (as in the scale for Hurricane intensity) we do not mean that A is twice as likely
as B; we mean that A is 100(= 102) times more likely than B. We pose many problems illustrating the meaning of
“orders of magnitude” that should convince students that this is not just a shorthand, but conveys a rich meaning
that other wise could be missed.

Finally, in the last section we introduce certain volume calculations (for a cylinder, cone and sphere), the purpose
of which is to work with the relations among these solid figures, and secondly, to apply the mathematics of the
preceding sections. As an example, Farmer Brown has fields that can produce grain, and silos that can store them.
Given the correspondence between square feet of farmland and cubic feet of grain, we ask these questions: a) for
a certain size of field, what storage capacity is needed. Given the size of the silo, how many square feet need to be
planted in wheat so as to fill the silo?

Section 8.1 Integer exponents

Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example,
32 × 3(−5) = 3(−3) = 1/(33) = 1/27. 8.EE.1

In previous discussions about area and volume we already have introduced the notation x2 and x3: the first is the
product of two x’s, the second the product of three x’s. We can now introduce the same notation for all counting
numbers (positive integers): xn is the product of n x’s for any positive integer n. Notice that multiplication of
such objects amounts to addition in the exponent: x3 × x8 = x(3+8) = x11. In general, we can say that for positive
integers, we have

xp × xq = xp+q
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for all positive integers p and q.

Can we extend this notation to all integers, positive, negative and zero? If we want to be able to write

x5 × x−3 = x5−3 = x2 ,

we have to understand multiplication by by x−3 as an operation going from x5 to x2. But we know such an
operation: it is that of canceling three of the x’s, and this is the same as division by x3. So, we take this as the
definition of negative exponents:

x−p =
1
xp

The addition rule above now holds for all nonzero integers.

Since x2 means: multiply the expression x by itself, if we replace x by x3, then (x3)2 = x3 × x3 = x6. But x6 is the
same as x2·3. This of course is true for all integers, not just 2 and 3, so we have this understanding of the product
rule for exponents:

xp·q = (xp)q = (xq)p, for all positive integers p and q.

Now what meaning do we attach to the expression x0? We follow the logic of the rules of arithmetic: If we start
with the expression x5, and cancel all of the x′s, we get 1. That is, we have:

x5 × x−5 = 1 .

The rules of arithmetic tell us that x5+(−5) = x0, so we need to adopt the rule x0 = 1.

Another way to look at it is this: we are studying the multiplicative structure of expressions. When we work with
the additive structure of expressions, the simplest expression is 0. So, in the case of multiplicative structure, the
simplest expression should be 1. It follows that anything multiplied by itself no times is 1. Finally, we have to
understand that these rules apply to all values for x except 0, because the logic doesn’t apply for x = 0.. We can’t
divide by zero, so 0 to a negative exponent doesn’t make sense.

Let’s pay particular attention to raising negative number to a power. Since −a and (−1)(a) are the same thing, we
can calculate using the commutative property. For simplicity, suppose a > 0, so we already feel comfortable with
an. How about (−a)n? Write this as(−1)n×an, and so we just have to know what (−1)n.If n is a positive integer, this
is the product of n (−1)’s. Now multiplication by -1 is the same as reflection in the origin, so (−1)2 is the reflection
of −1 in the origin, and is 1; (−1)3) reflects −1 in the origin and then reflects back again, so is −1. Continuing
with this representation as reflecting back and forth around the origin, we see that (−1)n is 1 if n is even, and is −1
if n is odd. This is true also for negative exponents, since (−1)−1 = −1 (−1 is its own multiplicative inverse).

Let us summarize the operational techniques with exponents:

In the following, a and b can be any number, and p , q and n are integers (positive or negative):

• ap+q = ap × aq

• (a · b)n = an × bn

• a−p = 1
ap .

• ( a
b )n = anb−n

• (ap)n = ap+n

• (−a)n is equal to an if n is even, and is equal to −(an) if n is odd.

It is good to have clearly in mind that the use of exponents is in reference tot the multiplication of positive numbers,
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and that, for a > 1, the numbers an, for n > 0, are to right of 1, and for n < 0 between 0 and 1. Figure 1 illustrates
this for a = 2.

0 1 2 3 4 5 6 7 8

2−3

2−2

2−1 21 22 23

Negative Exponents Positive Exponents

Figure 1.

It is good to have as a reference the values of the powers of small digits.

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

1 1 1 1 1 1 1 1 1 1
2 4 8 16 32 64 128 256 512 1028
3 9 27 81 243 729 · · ·

4 16 64 256 1028 · · ·

5 25 125 625 · · ·

10 100 1000 10000 · · ·

The powers of 10 are particularly easy: for p positive, 10p is a 1 followed by p zeros, and 10−p is a decimal point
followed by zeros and ending in the pth position with a 1:

102 = 100 105 = 100, 000 10−2 = .01 10−5 = .00001 .

One of the values of exponents is that their use makes the understanding of our place value notation and compu-
tation more clear. The number 5283.7 is expressed in “long form” as

5 × 1000 + 2 × 100 + 8 × 10 + 3 + 7 ×
1

10
.

Using exponents this becomes

5 × 103 + 2 × 102 + 8 × 101 + 3 × 100 + 7 × 10−1 .

Example 1. Place Value Operations

• Double 63. To double a number we could multiply the number by 2. Or, we could double every
digit. This way, double 63 is 126. But what if we double 67, is the answer 1214? No, because the
“place” value of the 2 in 12 and the one in 14 are the same and so must be added, and the answer
is 134. Although this looks like a magical trick - it is not. Writing out the place value in long
form, doubling the digits looks like this:

2×67 = 2×(6×10+7) = 2×(6×10)+2×7 = 12×10+14 = 12×10+1×10+4 = 13×10+4 = 134

• Multiply 102 by 54. We put these numbers in long form and use the rules of arithmetic:

102 · 54 = (102 + 2)(5 × 10 + 4) = 5 × 103 + 4 × 102 + (2 · 5) × 10 + 2 · 4

= 5 × 103 + 4 × 102 + 102 + 8 = 5000 + 500 + 8 = 5508 .

• Take 3 percent of 5000. In exponential notation, 3 percent is 3× 10−2 and 5000 is 5× 103. So, we
use the rules of exponents to solve:

(3 × 10−2) · (5 × 103) = 15 × 10−2+3 = 15 × 101 = 150 .
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Example 2. Operations with exponents

• 8 · 16 = 23 · 24 = 27 = 128 .

• 64 · 18 = 26 · 2 · 32 = 27 · 32 = 128 · 9 = 128 · (10 − 1) = 1280 − 128 = 1152 .

• Approximate
√

6340. This is a little less that 64 × 100, so its square root is a little less than
8 × 10 = 80.

Example 3. MarchMadness (from the ChicagoMaroon, March, 2012)

March Madness - the NCAA final basketball tournament - has the form of a single-elimination tourna-
ment. In such a tournament, we start with a certain number of teams, and we pair them off into games:
each team plays a game. This is called the first round. All the losers in the first round are eliminated;
in the second round all the winning teams are paired off into games, and all the second round losers are
eliminated. This process continues until only two teams remain: this is the final round and the winner is
the champion of the tournament. For a graphic of the 2012 women’s basketball brackets see the figure
below.
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Since there are two teams in the final round, there had to be four teams in the semi-final round, and thus
eight teams in the preceding round and so forth. So, it is necessary, for a single elimination tournament
to work, with no teams ever idle, that we start with a number of teams that is a power of two, and that
exponent is the number of rounds. So, for example, if we start with 16 teams, since 16 = 24, there are 4
rounds and 8 + 4 + 2 + 1 = 15 games.

In March Madness we start with 64 teams. How many rounds are there? How many teams are in the
second round? in any round? How many games total are played?

Solution. Since 64 = 26, there are six rounds. Each round eliminates half the remaining teams, so there
are 32 teams in the second round, 16 in the third, and so forth. There are 32 + 15 + 8 + 4 + 2 + 1 = 63
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games. Another way of counting is that there are 63 teams that are NOT champions, and each game
produces one non-champion.

Section 8.2 Scientific Notation

Scientific Notation and Place Value

Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small
quantities, and to express how many times as much one is than the other. For example, estimate the population of
the United States as 3 × 108 and the population of the world as 7 × 109, and determine that the world population
is more than 20 times larger. 8.EE.3

In today’s world we work with very big numbers (astronomical distances) and very small numbers (microscopic
distances), so a shorthand has been invented to make it easier to handle such numbers. To illustrate, suppose we
want the product of 300,000,000 and 7000. We know that this is going to be 21 followed by a certain number of
zeros, but how many? We calculate this way:

300, 000, 000 × 7000 = (3 × 100, 000, 000)(7 × 1000) = (3 × 7)(100, 000, 000 × 1000)

= 21 × 100, 000, 000, 000 = 2, 100, 000, 000, 000 .

The second multiplication (100, 000, 000× 1000) amounts to putting the 0’s at the end of the second factor behind
the zeros of the first factor; in other words, the number of zeros in the product is the sum of the numbers of zeros
in the factors. In exponential notation: !08 × 103 = 1011. Using this notation, the above calculation now looks like
this:

(3 × 108)(7 × 103) = 21 × 1011 .

Whenever we write numbers using the symbol ×10n , we say are using scientific notation. As this example shows,
this notation makes calculations easier to read. It also makes it easier to make comparisons; for example the
statement “Earth is 93 million miles away from the Sun, and Mars is 143 million miles away from the Sun,” we
are using scientific notation (simply replace the word “million” with ×106. This is easier to understand than the
statement “Earth is 93000000 miles away from the Sun, and Mars is 143000000 miles away from the Sun.”

To be precise, a number is said to be written in normalized scientific notation if it is given in the form a × 10n,
where a is a number whose absolute value is greater than or equal to 1 and strictly less than 10 and n is an integer.
a is called the significant figure of the number, and n its order of magnitude. To illustrate: Earth is 9.3× 107 miles
from the Sun, and Mars is 1.43 × 108 miles from the Sun and (3 × 108)(7 × 103) = 2.1 × 1012 .

Example 4.

• Express 35,000,000 in normalized scientific notation. This is 35 followed by 6 zeros, so is 35×106.
To put this in normalized scientific notation, we have to move the decimal point one place to the
left, and raise the exponent by 1, giving us the answer: 3.5 × 107. Note that we could also write
35000000 as 350 × 105 or 0.35, depending upon what it is that we want to emphasize. Generally
speaking, as every three places is denoted by a comma, it is best to go by multiples of 3.

• Express 3,650,000 in scientific notation. This could be 365 × 104 or 3.65 × 106; it is the second
that is in normalized scientific notation.

• Express 3,651,284 in scientific notation with 3 significant figures. This means that, for purposes
of estimation, we care only about the first three digits, and so the answer is 3.65 × 106.

Computers and calculators use a different notation for scientific notation: 36400000 appears as 3.64E7, meaning
3.64 × 107. Let us take a moment to introduce the vocabulary for large numbers.
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Name Number Scientific Notation
One 1 100

Ten 10 101

Hundred 100 102

Thousand 1000 103

Ten Thousand 10,000 104

Hundred Thousand 100,000 105

Million 1,000,000 106

Billion 1,000,000,000 109

Trillion 1,000,000,000,000 1012

Quadrillion 1,000,000,000,000,000 1015

Table 1

and so forth. Notice one value of scientific notation: the middle column grows more and more unreadable, while
the last column can be grasped. So, for example, a septillion will be 1024, or 1 followed by 24 boring zeros.

Fractional decimals can be similarly written, using scientific notation, but this time the powers of 10 are negative:

0.1 = 10−1 0.001 = 10−3 0.367 = 3.67 × 10−1 .

As far as names go, we speak of powers of 10 in the denominator by adding “th” to the end of the word, so 0.3 is
3 tenths, or 3 × 10−1, 0.000005 is 5 millionths, or 5 × 10−6, and so forth. You might want to notice that there is
a little anomaly in scientific notation: 10, 000 = 1 × 104 but .00001 = 1 × 10−5; that is, the exponent of 10 is not
always the number of zeros from the decimal point. This is because the first place to the left is the 0th place, while
the first place to the right is the (-1)st place. Finally, there do not exist special names for the negative powers of
ten, but there are such names in the metric system (for grams, meters, etc.), as in this table:

Name Number Scientific Notation
meter 1 meter 100 meter
decameter tenth of meter 10−1 meter
centimeter hundredth meter 10−2 meter
millimeter thousandth meter 10−3 meter
micrometer millionth of a meter 10−6 meter
nanometer billionth of a meter 10−9 meter
angstrom tenth of a nanometer 10−10 meter

Table 2

An angstrom is the unit of measurement used to measure lengths at the atomic level.

It now makes sense to inquire: how do we calculate arithmetic operations in scientific notation? First, as for
addition, the issue shouldn’t come up: if the numbers are not of the same order of magnitude, the question won’t
come up. So, for example, 3.7 × 104 + 6.1 × 104 = 9.8 × 104, by the distributive property of arithmetic. But we
won’t be asked to calculate

7.104 × 107 + 2.100 × 102 =?

because it just doesn’t make sense: the first term is 5 orders of magnitude large than the second. It is like asking:
if I weigh myself on a scale , and then directly after a fly lands on my head, will the scale show a difference?
The answer is clearly “No.” So, in the displayed question, the first number has 3 decimal points of accuracy (so is
7104 × 104), and thus the second number, 2.100 × 102, is under the radar.

However, orders of magnitude in scientific notation play a major role when the problem involves multiplication
and division, For example, 120 million divided by 30 gives 4 million. The fact that “120 million” and “30” have
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different order of magnitude is very relevant to answering the question. Writing “120 million” as 1.2 × 108 and
“30” as 3 × 10, this calculation becomes:

1.2 × 108

3 × 10
=

1.2
3
×

108

10
= 0.4 × 107 = 4 × 106 = 4, 000, 000 .

We can summarize this as follows:

• (a × 10n)(b × 10m) = (a × b)(10n+m) •
(a × 10n)
(b × 10m)

=
a
b
× (10n−m

Example 5.

a. Multiply 3.2 × 104 by 6 × 10−1.

b. Divide 3.3 × 106 by 1.1 × 105.

Solution.

a. First, let’s remind ourselves what we are being asked without scientific notation: Multiply 32,000
by 0.6. Since that is what is being asked, let’s go back to scientific notation:

(3.2 × 104) × 6 × 10−1 = ((3.2) × 6) × (104 × 10−1 = 19.2 × 103 = 1.92 × 104

which is, in standard notation 19,200.

b. Here we are asked to divide 3.3 million into 110,000 parts.

3.3 × 106

1.1 × 105 =
3.3
1.1
×

106

105 = 3 × 10

or 30.

Example 6.

Suppose that we want to multiply 3 billionths by 7 ten-thousandths. We might write:

3
1000000000

×
7

10000
=

3 · 7
1000000000 · 10000

=
21

10000000000
,

but the following is much easier to understand:

(3 × 10−6)(7 × 10−4) = 21 × 10−10 .

Solve Problems and Apply Scientific Notation

Perform operations with numbers expressed in scientific notation, including problems where both decimal and
scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very
large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation
that has been generated by technology.8.EE.4

Example 7.
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• How many millions are there in a trillion? We write a million as 106 and a trillion as 1012, and the
question is: evaluate 1012

106 . The answer is 1012−6 = 106, or a million. A trillion is a million million.

• .0031 × 562.1 =? The easiest way to get the answer is to use a calculator. However, we may just
want an estimate, in which case, moving to scientific notation is best. Rewrite the problem as
(3.1× 10−3)(5.621× 102). Now estimate the significant figures: this is about 3 times 5.5, which is
16.5. Next, add the exponents, and write the (estimate of) the answer as 16.5× 10−1, or 1.65. The
calculator turns up the accurate answer: 1.7425.

• About how much is 40% of 140 million? Rewrite this as the product

(40 × 10−2)(140 × 106) = (40 × 140)(10−2 × 106) = (4 × 14)(102 × 10−2 × 106) = 56 × 106

or 56 million.

Here are some illustrations of the value of scientific notation in applications, particularly to problems that give
meaning to the concept “order of magnitude.”

Example 8.

In a class action suit, 4000 claimants were offered a $800 million settlement. How much is that per
claimant?

In scientific notation, the question is to evaluate (8 × 108) ÷ (4 × 103), which is (8 ÷ 4)(10(8−3)) which
simplifies to 2 × 105. Thus each claimant would receive $200,000.

Example 9.

We read in the paper that the United States has a 15 trillion dollar debt. Let’s say that there are 300
million working people in the United States. How much is the debt per worker?

In scientific notation this is 15 × 1012 divided by 3 × 108, which is 5 × 104, or about $50,000 for each
tax-paying citizen.

Example 10.

Tameka has a job at which she earns $10 hour. Her tax rate is 18%. Let’s assume that all of Tameka’s
taxes go toward paying off the $50,000 debt of the preceding problem. How many hours will she have
to work to pay off her share of the debt? If she works 2 × 103 hours a year, how many years is that?

Solution. Given the assumptions of this problem, Tameka’s hourly contribution to paying the debt is
18% of $10, or $1.80. Leth represent the number of hours it takes until she pays off her $50,000. This
gives us the equation 1.8h = 5 × 104, and thus h = (5/1.8) × 104, which is 27,778. If she works 2000
hours in a year, that comes to 27.78 ÷ 2 = 13.89 years. (Track the implicit use of scientific notation).

The following two examples are taken from Grade 7, but are repeated here to demonstrate the value of scientific
notation.

Example 11.

The National Press Building on Fourteenth Street and Avenue F is 14 stories high, with 12 feet to each
story. It has 150 feet of frontage on 14th St, and 200 feet on Ave F. The building has the shape of a
rectangular prism. What is its volume?

We view the building as constructed by drawing upwards a 150×200 rectangle for 14 stories. Now the
area of the base is 1.5 × 102 × 2 × 102 = 3 × 104 sq. ft. Since each story is 12 feet high, the volume
of each story is 12 × 3 × 104 = 3.6 × 105 cu. ft., and as the building is made up of a stack of 14 stories
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Figure 2

identical to the first one, the total volume is 14 × 3.6 × 105 = 5.04 × 106 cu. ft; approximately 5 million
cubic feet.

As it turns out, the building sold in 2011 for $167.5 million dollars, which comes to about a $33.5 cost
per cu. ft. However, the value of a building is not measured by its volume, but by the square footage
of its floors. Since there are 14 floors , each a copy of the first floor, so each of 30,000 square feet, the
total floor area of the building is 14 × 3 × 104 = 4.2 × 105 square feet, and the cost per square foot is
(167.5 × 106) ÷ (4.2 × 105) = 39.88 × 10, that is $ 398.80 per square foot.

Example 12.

The Pentagon, the headquarters of the U.S. Department of Defense is a regular five-sided figure with 6.5
million square feet of floor space on seven levels, two of which are underground. The side length of the
interior central plaza is about 1/4 the side length of the building.

Figure 3

a. What is the footprint of the Pentagon? The footprint is the total area occupied by the building
together with the central plaza.
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b. What is the area of the central plaza?

c. There are 11 feet of elevation between floors of the Pentagon. What is the total volume of the
above-ground building?

Solution.

a. The image shows the Pentagon to be a prism - in the sense that all floors are of the same shape and
size indeed all sections by planes parallel to the ground are of the same shape and size. Thus each
floor of the building comprises 1/7 of 6.5× 106 sq. ft, or 928×103 sq. ft. But this is the area of the
base floor of the building, not the footprint, which includes the central plaza, We are told that the
the length of a side of the plaza is one-third the side length of the building. Since the plaza and the
building have the the same shape, that tells us that the footprint of the plaza is a downscaling of
the footprint of the entire Pentagon by a linear scale factor of 1/3. Since area scales by the square
of the linear scale factor, we conclude that the area of the plaza is 1/9th of the are of the footprint.
Thus the area of the floor of the building, 928,000 square feet is 8/9 of the area of the footprint.
The answer then, to a) is that the area of the footprint is 9

8 (928 × 103) = 1.044 × 106 sq. ft.

b. The plaza is 1/9 of the footprint, so its area is 1
9 (1.044 × 106) = 116 × 103 sq.ft.

c. The reason this figure (the volume of the building) is interesting is to estimate the cost of heating
the building in winter, and air-conditioning it in summer. So, now we are interested only in the
volume of the building that is above ground. Since there are 5 stories above ground, each of height
11 feet, the building stands 55 feet high. The area of the base is 928,000 sq. ft., so the volume of
the building above ground is 55 × 928, 000 = 51, 040, 000 cu. ft.

Now, suppose that the cost of a building in the Washington DC area is about $398.80 per sq. ft. So, at 6.5 million
square feet, the cost of the Pentagon today would be approximately 4 × 102 × 6.5 × 106 = 26 × 108, or 2.6 billion
dollars.

Example 13.

On the computer a byte is a unit of information. A typical document contains many tens of thousands of
bytes, and so it is customary to use these words: 1 kilobyte = 1000 bytes; 1 megabyte = 1000 kilobytes,
1 gigabyte = 1000 megabytes, 1 terabyte = 1000 gigabytes.

a. Rewrite this vocabulary in scientific notation. How many bytes are there in each of these terms?

1 kb = 103 b; 1 mb = 103 kb = 106 b; 1 gb = 103 mb = 109 b; 1 tera = 103 gb =1012 b.

b. My computer has a memory (storage capacity) of 16 gigabytes. How many such computers do I
need to have, when all are combined, a terabyte of memory?

The question is: how many times does 16 gb go into 103 gb?

103

16
=

100
16
× 10 = 6.25 × 10 = 62.5

so I’ll need 63 such computers.

c. An online novel consists of about 250 megabytes. How many novels can I store on my 16 gigabyte
computer?

16 gb is 16× 103 mb, so we want to know how many times 250 goes into 16× 103. Since we will
be dividing by 250, it is worthwhile noting that

1
250

=
4

1000
= 4 × 10−3 .
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Thus
16 × 103

250
= 16 × 103 × 4 × 10−3 = 64 .

Example 14.

Many chemical and physical phenomena happen in extremely small periods of time. For that reason,
the following vocabulary is used: 1 second = 1000 milliseconds, 1 millisecond = 1000 microseconds, 1
microsecond = 1000 nanoseconds.

a. Rewrite this vocabulary in scientific notation. How many nanoseconds are in a millisecond? in a
second? in an hour?

b. My computer can download a byte of information in a millisecond. How long will it take to
download a typical book (250 megabytes)? How long will it take to download the Library of
Congress (containing 36 million books). Express your answer conveniently in terms of time.

Solution.

a. 1 second = 103 milliseconds = 106 microseconds = 109 nanoseconds. Otherwise put, a nanosec-
ond is one billionth of a second, a microsecond is one millionth of a second, and a millisecond is
one thousandth of a second.

b. It takes 10−3 seconds to download one byte of information, so the rate is 10−3 seconds per byte.
Thus to download 250 megabytes, which is 2.5 × 105 bytes, so it takes 2.5 × 105 × 10−3 = 2.5 ×
102 = 250 seconds, or 4 minutes and 10 seconds. To download 35 × 106 such books will take
36 × 106 × 2.5 × 102 = 9 × 109 seconds. Since there are 3600 seconds in an hour and 24 hours in
a day, in days this is:

9 × 109

36 × 102 × 24
=

25 × 107

24
= 1.04 × 107

days; far too long to wait. My computer is too slow. If I get a new computer that is one million
times as fast (one millionth is 10−6), it will still take 10.4 days to download the library of Congress.

Section 8.3 Volume

Know the formulas for the volumes of cones, cylinders and spheres and use them to solve real-world and mathe-
matical problems. 8.G.9

In this section we start by reviewing some of the terminology and ideas of 7th grade used in volume computations.
There we talked of prisms and cones based on polygonal figures in the plane; here we move to the same concepts,
based on circular figures.

Prisms and Cylinders

We conceive of measurements in the various dimensions (length, area, volume) as a natural progression through
the dimensions. So,to begin: we start with a point on the line that we draw out along the line for a certain distance,
creating a line segment, and the measurement of that line segment is its length. Now suppose that we start with a
line segment in the plane of length l and draw it out for a distance w perpendicular to the line segment: we obtain
a rectangle of side lengths l and w.The area of that rectangle is the product: A = l · w Now, take a figure F on
a plane in three dimensions of area A; dragging it out in a direction perpendicular to the plane for a distance h,
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h

r

Figure 4

we get the prism with base F . Following the preceding logic, the measure
of this solid figure (called its volume) is the product of h with A: V = A · h.
In particular, if the figure in the plane is the rectangle of side lengths l and w,
the then solid figure (called a rectangular prism) is of volume V = l · w · h.
If the figure we started with was a triangle of base b and altitude a, then the
solid figure ( called a triangular prism or wedge) has volume V = 1

2 abh.

In 7th grade we solved problems for prisms and cones based on polygonal
figures. Now, suppose we start with a circle in the plane of radius r, and
therefore of area πr2. Drawing it out, the solid figure we get is a circular
cylinder and its volume is V = πr2h: that is, the product of the area of the
base with the height. It is customary to drop the adjective “circular”, and call
this the cylinder (see Figure 4).

Example 15. Volume computations

First, as a reminder, let’s begin with a review of seventh grade problems.

a. Find the volume of a prism built on a rectangle of side lengths 50 feet and 18 feet, and of height
25 feet.

Solution. The volume is the product of these lengths, so is 50 × 18 × 25 = 22500 cubic
feet. If you remember that 50 is half a hundred and 25 is one-fourth a hundred, this makes the
computation easier:

50 × 18 × 25 =
1
2

102 × 18 ×
1
4

102 =
1
8
× 18 × 104 = 2.25 × 104 = 22500 .

b. A wedge is a triangular prism whose base is a right triangle of side lengths 2 in by 5 in, and whose
height is 8 in. What is the volume of the wedge (as shown in Figure 5)?

8 2
5

Figure 5

Solution. We see this as a 2 × 5 right triangle dragged out 8 inches, so the area is

(
1
2

2 · 5) · 8 = 40 cubic inches .

c. A construction company wants to build a small shed covering a rectangular plot, that is 10 feet
high, 18 feet long and has 3600 cubic feet f volume, What should its width be?

Solution. The shed is a rectangular prism of 3600 cubic feet, its height is 10 feet and its length
is 18 feet. If we let w represent the width, we must have 18 × w × 10 = 3600, or 180w = 3600.
That does it! So w = 3600/180 = 20 feet.

d. An ice cream company wants to package a pint of ice cream in a circular cylinder that is 4 inches
high. What does the radius of the base circle have to be?

Solution. A pint is 16 fluid ounces,but we need this in cubic inches. We search and find that 1
fl oz is 1.8 cu. in. Now we can proceed. A pint is 16 fl oz, so is 16×1.8 = 28.8 cu. in. We want to
put this in a cylinder of height 4 in, and of base radius r, and we want to find the value of r. What
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we know is that πr2h = V , and we know V − 28.8, h = 4 and let’s take π = 3.14. We have to solve
the equation

(3.14)r2(4) = 28.8 or r2 =
28.8

4(3.14)
= 2.29 .

Since 1.52 = 2.25, we can conclude that the radius is slightly more the one and a half inches.

In seventh grade we introduced Cavalieri’s principle in order to explain facts about volume calculations, on the
grounds that this principle is intuitively plausible, although not technically part of the middle school curriculum.
We shall once again base our understanding on this mathematical tool.

Cavalieri’s principle: Suppose that we stand two figures side by side. Suppose that every hori-
zontal slice through the two figures gives two planar figures of the same area. Then the volume of
the two solid figures is the same.

Notice that we do not require that the figures in the sections have the same size and shape, only that they have
the same planar area. This more general interpretation will be useful to us in studying curved solids in three
dimensions. We also want to notice that Cavalieri’s principle applies in two dimensions (where the section is
made by a line parallel to the base, and the hypothesis is that the lengths of the line segments are the same. This
gives us another explanation of the formula V = 1

2 bh for the area of a triangle, where b is the length of the base of
the triangle, and h is its height (see Figure 6).

H
ei

gh
t

Base

Figure 6

Figure 7 illustrates the reasoning behind Cavalieri’s principle, where the individual figures could represent rectan-
gles in the plane, or rectangular prisms or cylinders in three dimensions.

Figure 7

Example 16.

A buttress to a wall is a support structure that extends out from the wall to the ground, as in Figure 8.
That buttress is made of blocks, all with base area of 3 sq. ft. The top of the buttress lies against the wall
30 feet above the ground. What is the volume of the buttress?
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Figure 8

Solution. Using Cavalieri’s principle, we can consider this as a column of bricks of area 3 sq. ft. that
rises 30 ft. above the ground. So, the volume is Bh = 3 × 30 = 90 cu. ft.

Cones

Recall from 7th grade that a cone is a three dimensional shape consisting of a figure in the plane (called the base
B), a point A not on that plane (called the apex) and all line segments joining A to a point on B.In 7th grade we
discussed cones whose base is a polygon in the plane, here we turn to the right circular cone: a cone whose base
is a circle in the plane (see the image on the right in Figure 9). Last year we discussed the formula for the volume
of the pyramid on the left: the base is a square of side length a and the height is h: V = 1

3 a2h: the volume of the
pyramid is one-third the product of the area of the base and the height. This formula is true for every cone, in
particular the right circular cone:

Volume of a Cone: The volume of a right circular cone is one-third the product of the area of the
base and the height. If the height is h and the radius of the base is r, then V = 1

3πr2h.

h

a

A

r

h

Figure 9

We can verify this fact by the following experiment. Select a cone and a cylinder of the same base radius r and
height h; make sure that the cone is closed at its vertex and open at its base. Fill the cone with water and pour that
water into the cylinder.The volume of the cone is the volume of the column of water in the cylinder. Depending
upon how carefully the measurements are made, it will turn out that the height of that cylinder is 1

3 h, and so the
volume of the cone with base radius r and height h is 1

3πr2h.

In 7th grade we saw how to fill the cube on the left with three copies of the pyramid shown on the left in Figure 9,
thus confirming this formula. The ancient Greeks took this to show that the 1/3 was the right factor for all cones,
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and tried in vain to find a way to fill a cylinder with three copies of the circular cone it circumscribes. It was
not until the Calculus was developed that this ”1/3” was understood. Actually, about a century earlier, Cavalieri
showed how to effectively approximate the volume of a cone by slicing it into thin discs parallel to the base, noting
that the radius of the discs decreases linearly, and then adding the volumes of the discs.

Example 17.

Let’s illustrate Cavalieri’s computation, by finding the volume of a tower of Hanoi (in the background
on the left in Figure 10).

Figure 10

The tower of Hanoi is the stack of cylindrical discs in the corner behind the work desk. The radii of the
discs increase linearly as we go down the tower. The game using the tower of Hanoi employs to the two
vertical rods as well: the point being to move all the discs onto one of the other rods, one disc at a time
so that no disc is ever placed on top of a smaller disc. The NCTM site, Illuminations has a java script to
play the game (http://illuminations.nctm.org/Activity.aspx?id=4195). Our interest however, is just to try
to calculate the volume of the entire tower. Now the game can be played with any number of discs; the
tower in the photo has 32 discs. As the computation is tedious, we’ll work it out for 9 discs (the most
common size for playing the game).

Let us take the radius of the base of the tower of Hanoi to be r units, and the height h units. Then,
since there are 9 discs, the height of each disk is h/9. Since the radii of the of the disc increase linearly,
and there are 9 of them, the radius of the top disk will be 1/9, of the second disc, 2/9 and so forth. To
calculate the volume of the tower, we’ll work downwards from the top, adding one disc at a time. Now
the first disc is a cylinder of base radius r/9 and height h/9, so its volume is

Volume of top disc = π(
r
9

)2 h
9

= π
r2h
93 .

The radius of the second disc is 2r/9, and its height is h/9 and we have:

Volume of second disc = π(
2r
9

)2 h
9

= π
4r2h
93 .

The radius of the third disc is 3r/9, and so The radius of the second disc is 2r/9, and its height is h/9
and we have:

Volume of third disc = π(
3r
9

)2 h
9

= π
9r2h
93 .

The pattern is clear: each time we move down a disc, the coefficient of r is the next integer over 9, and
as the height is always h/9, we see that:

Volume of the kth disc = π(
kr
9

)2 h
9

= π
k2r2h

93 .

8MF8-15 ©2014 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.



The volume of the tower of Hanoi is the sum of the volumes of the individual discs, and the volume of
each disc is a factor of πr2h; the factor for the kth disc is k2/93. Now, we do the calculation:

12 + 22 + 32 + · · · 92

93 =
285
729

= 0.391 ,

which is beginning to look a little like 1/3. What we will see, if we do what Cavalieri did, is that the
more discs there are in the tower of Hanoi, the closer that factor gets to 1/3. In fact, for the 32 disc tower
of Hanoi in the photo above, the factor of πr2h is

12 + 22 + 32 + · · · 322

323 =
11440

323 = 0.349 ,

Were we to do this for a tower with 1000 discs, we’d find that the factor is 0.3338335 - getting really
close to 1/3. Cavalieri did not just keep finding the sum; without computers even the first sum (up to 9)
that we did would have been too difficult. He was smarter, he studied the algebraic form of the answer
to be able to conclude that it gets closer and closer to 1/3 as the discs get thinner and the number of discs
gets larger.

The Sphere

r

Figure 11

A sphere of radius r is the set of all points in space that are of a distance r from a
point C, called the center of the sphere (see Figure 11).

We can find a formula for the volume of a sphere with physical models as we did
above for the cone. Pick a hemisphere (half of a sphere) of radius r, and a cylinder
of radius r and height r. Now, fill the hemisphere with water and pour the water
into the cylinder. Again, depending upon the care of measuring, we will find that
the water level comes to about 2/3 the way to the top. So the volume of the column
of water, and therefore, that of the hemisphere is V = πr2( 2

3 r) = 2
3πr3. Since the

hemisphere is half a sphere, we get

The volume of a sphere of radius r is V = 4
3πr3.

Example 18.

It fascinated the Greeks that, in terms of volume, a cylinder consisted of a cone and a hemisphere.
They sought, without success, a constructive method to show that a cylinder can be decomposed into a
cone and a hemisphere, or at least one that does not depend upon physical measurements. It was not
until Calculus was invented that one found a mathematical proof of this fact; but we can use Cavalieri’s
principle to see why this is true. Place a cylinder, hemisphere and cone on a table as shown in Figure
12.

h

1
1

h

r

h

r′

Figure 12
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The height and base radius of the cylinder and the cone are both 1 unit, and the radius of the hemisphere
is also 1. Now let us take a section of this setup by a plane parallel to the base and a distance h from the
top of the figures.

The plane section of each figure is a circle, for the cylinder it is a circle of radius 1; let r be the radius of
the circular section of the hemisphere, and r′ that of the cone. If we can show that r2 + r′2 = 1, then by
Cavalieri’s principle we are done: the area of the section of the cylinder is equal to the sum of the area
of the section of the hemisphere and the area of the section of the cone. Let’s start with the hemisphere:
by the Pythagorean theorem, h2 + r2 = 1, since the hypotenuse of that triangle is a radius of the sphere,
of length one unit. Now for the cone: the triangle of sides labeled h and r′ is isosceles, so r′ = h. Thus
r2 + r′2 = 1 − h2 + h2 = 1.

Example 19.

A farmer wants to raise 250,000 sq ft of wheat, and have it watered with a rotary irrigator. Approximately
what should the radius of the circle be?

Solution. The area of the circle is πr2, where r is the radius. So, we must solve πr2 = 25×104. Divide
both side by π and use 3 as an approximation of π to get r2 = 8 × 104. Now

√
8 × 104 = 2

√
2 × 102, so,

using 1.5 as an approximate value for
√

2, we get that the radius is about 350 ft.

Example 20.

The same farmer has a silo with a base radius of 30 feet and a storage
height of 100 feet. A silo is a storage bin that is a cylinder with a
hemisphere on top. The “storage height” is the part which can be
filled with grain - it is just the cylinder. A cu. ft. of grain weights 62
lbs. How many pounds of grain can the farmer store in the silo?

a. How high (including the hemispherical top) is the silo?

b. 1000 sq ft of wheat produces 250 lbs of grain. Is the silo large
enough to hold the grain? By how much?

30

10
0

Example 21.

An ice cream cone consists of a cone filled with ice cream topped
with a hemisphere of ice cream. If the cone is 4 inches long and the
top has a diameter of 3 inches, how much ice cream (in cu in) fits in
the cone. If 6 cu in of ice cream is equal to 1 fl oz, how many ounces
of ice cream is that? If one fl oz of ice cream is 143 calories, how
many calories is that?

3

6

Solution. We assume that the ice cream cone is completely full and is topped with a hemisphere of
ice cream. Now, let us use the given data: the cone has height 4 in, and radius 1.5 in. The hemisphere
has radius 1.5 in. Then the total volume is

1
3
π(1.5)2(4) +

2
3
π(1.5)3 = π(

1
3

(2.25)(4) +
2
3

(3.375)) = 5.25π

cu. in. Using 3.14 as an approximation for π, this gives us 16.48 cu. in., or 2.75 fl. oz, since there are 6
cu. in. in a fl. oz. At 143 calories a fl. oz., the cone contains about 393 calories.
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Chapter 9
Geometry: Transformations, Congruence
and Similarity

By the third century BCE, the Greeks had gathered together an enormous amount of geometric knowledge, based
on observations from the ancient Greeks (such as Pythagoras), ancient civilizations (Babylonian, Egyptian) and
their own work. Aristotle and his successors set about the task to put this knowledge on a firm logical basis. A
result of their work is the “Elements of Geometry” by Euclid (the name may be of one person or of the group).
Here the foundation of the subject lay in a set of “self-evident” axioms, and “constructions” by straightedge and
compass. For example, two figures were called congruent if it we could copy one onto the other with straightedge
and compass. These tools were used to copy points, line segments, circles and angles. In particular, they did not
use (numerical) measure:, for example, the measure of a line segment was the distance between the pins of the
compass when put at the endpoints of the segment. From there, the point of Euclid’s Elements is to deduce all
current knowledge from these basics, using only these axioms and tools and Aristotelian logic. It was important
that the logical structure not lay in folklore and structure, but on the axioms (although it is the folklore and
constructions that convince us that these axioms are self-evident). Concepts such as “same shape” and “same
size” were given explicit definition, all based on a small set of “undefined objects” (point, line, etc.) whose
understanding was intuitive. An objective, of course, was to minimize the number of concepts that were to be
understood intuitively; while everything else is understood by definition or strict logic. The truth of assertions
is justified solely by the application of logic to already known truths, and not by construction, observation, and
above all, not by techniques involving movement from one place to another.

This accomplishment was monumental, and formed the basis of geometric instruction for over 2000 years. We
should point out that, almost immediately, philosophers began to object that (at least) one of the “self-evident”
axioms was in fact, not so self-evident, and that was the axiom that dealt with parallelism. To paraphrase the
problem, two lines are said to be parallel if they never meet. Now, all other axioms could be intuitively understood
by pictures and constructions on a given piece of paper (or papyrus or the sand) of finite dimensions. This axiom,
however, requires us to conceive of going however far we have to to show that two lines meet, and thus are not
parallel, and worse: we can never verify that two lines never meet.

In the 19th century this dilemma was put to rest: there are planar geometries where all lines eventually intersect,
and others for which almost all lines never intersect. These were respectively, spherical and hyperbolic geometry,
and they were discovered because the applications of mathematics needed understanding of these geometries.
In the late 19th century, the mathematician, Felix Klein formalized a new concept of geometry, broad enough
to encompass all these forms. This geometry is based on its dynamical, rather than static, use. In Kleinian
geometry, the primary concept is that of transformation: a set of transformations are specified, and geometry
becomes the study of objects that do not change under these transformations. This is the approach that is adopted
in mathematical instruction of today and is called transformational geometry. So for example, translations are
allowable transformations and a triangle changes its position under a translation, but not its shape and size.

During the same time, other mathematical ideas were developing and maturing that would mesh with this geo-
metric thread. The introduction of coordinates in the 17th century, and the development of linear algebra in the
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19th century presented a rich set of tools in which to develop geometry; we can call this coordinate geometry.
This subject provides a new perspective: for example, distance between two points is defined in terms of the co-
ordinates of the points, and not in terms of a scale along a straight edge placed on the two points. This approach
leads to a complete interpretation of geometry in terms of algebra and through this interpretation, a new way to
rediscover geometry. The word rediscover is used deliberately, for coordinate geometry provides us with a way
to precisely calculate measures in geometry, but not a new way to develop the subject. For example, in coordinate
geometry, the Pythagorean theorem becomes the definition of distance. So, why is the Pythagorean theorem true?
We still have to return to either Euclidean or transformational geometry and the fundamental constructions.

All of this will be developed in a systematic way in secondary mathematics. The objective in 8th grade is to give
the students the opportunity of free exploration of the basic concepts of transformational geometry: rigid motions,
dilations, congruence and similarity. In chapters 9 and 10 students will verify that rigid motions preserve the
measures of line segments and angles, and that dilations preserve the measure of angles, while changing measures
of line segments by a constant factor. From there we go on to observe basic geometric facts, some of which will
be made explicit in the classroom, while others are discovered through the student’s own work.

Our philosophy is that the understanding of much of secondary mathematics is dependent upon the strength of the
students’ geometric intuition, and that intuition is best developed through free play with the fundamental concepts
and ideas. So, to some, our exposition may seem unstructured ( for this reason we provide a structured appendix);
we hope the teacher will see it as overstructured, and whenever possible, to proceed in the direction the class takes,
even if it veers too much from the text.

In Chapter 2, section 2, students learned that the slope of a line can be calculated as rise/run starting with any
two points on the line. To show why this works, we introduced translations and and dilations, and observed their
properties as transformations of the plane. We used these basic properties of dilations: it has one fixed point (the
center of the dilation) and all other points are moved away (or toward) the center. There is a positive number r
such that the dilation multiplies any length by r. Note that if r = 1, then there is no movement at all: in this case
the dilation is called the identity: no point moves.

In this chapter we begin to look at transformations of the plane more deeply, in order to get an understanding of
the shape and size of a geometric object, no matter where it is positioned on the plane. Students have already
seen shifts, flips and rotations: here we reintroduce them as motions of the plane that preserve the basic geometric
measures: that of angles and lengths. In discussing these motions, and dilations, one should take a dynamic, not
static approach. We are not picking up an object and dropping it, we are “moving” it to its new location.

A rigid motion of the plane is a transformation of the plane that takes lines to lines, and preserves lengths of line
segments and measures of angles. That is, under a rigid motion, a line segment and its image have the same length,
and an angle and its image have the same measure. An example of a rigid motion is a translation (called a shift
until now). There are two other basic kinds: reflections (flips) and rotations (turns). Now we consider two figures
congruent (of the same shape and size) if there is a sequence of rigid motions that takes one to the other. This
is a different way of looking at the equivalence of two figures without changing the meaning: if two objects are
congruent by way of a Euclidean construction, then there is a sequence of rigid motions that takes one to the other.
And if we can move one object onto another by rigid motions, there is a construction taking one to the other. The
advantage of working with motions rather than constructions, is that the idea is more directly related the the use of
geometry in science and engineering: one does not put a beam on a house by construction in place, but by moving
the beam from one place to the other. If we want to create a robot to do that job, we need to conceive of it in terms
of rigid motions, not constructions.

In the second section we turn to dilations and scale factors: a dilation preserves lines and angles, but changes the
scale of length of line segments. We say that two figures are similar (have the same shape) if there is a combination
of rigid motions and dilations that takes one to the other.

The focus of 8th grade geometry is to explore the concepts of transformations, congruence and similarity by
experimenting with them and gaining familiarity with the correspondence between constructing a new image of
an object, and moving the object to its new location. We concentrate on the “what” and “how” of geometry, while
high school geometry extends that basis to understanding the “why.” In real-life science and industry, people
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almost constantly draw representations (called graphics) of their work, even if it is about medical procedures or
finance rather than architecture or construction. In 8th grade we plant the foundations for these skills.

To begin with, students should be given an opportunity to discuss the concepts of “same shape” and “same size
and shape.” This is the purpose of the following example, and many of the preliminary exercises in the workbook.

Figure 1 shows several sets of objects. In Figure A all the images are of the same size and shape, and we can move
any one to any other one by a rigid motion. In the remaining figures, there is no rigid motion taking one figure to
the other. Try to understand how to move the first object in Figure A on the others. Why can’t this be done for
the other sets of objects? Note that in Figure B, the figures are of the same shape, but not of the same size, and in
Figures C and D the figures are neither of the same size nor shape.

Figure A Figure B

Figure C Figure D

Figure 1

Let’s recall some basic geometric facts that have been observed in previous grades.

1. A line is determined by any two different points on the line, by placing a straight edge against the points
and drawing the line.

2. Two lines coincide (are the same line) or intersect in precisely one point or do not intersect at all. The issue
may come up: what if they do not intersect on my paper, how do I know whether or not they ever intersect?
Because the question did come up in the days of Euclid, it generated a controversy that lasted for almost
2000 years.

3. Two circles do not intersect, or intersect in a point, or intersect in two points. If they intersect in more than
two points, they actually coincide.

4. Two lines that do not intersect are said to be parallel. If two lines intersect and all the angles at the point of
intersection have the same measure, the lines are said to be perpendicular.

5. The sum of the lengths of any two sides of a triangle is greater than the third.

Section 9.1. Rigid motions and Congruence

Understand congruence in terms of translations, rotations and reflections, (rigid motions) using ruler and com-
pass, physical models, transparencies, geometric software.

Verify experimentally the properties of rotations, reflections and translations:

a) lines are taken to lines, and line segments to line segments of the same length;

b) angles are taken to angles of the same measure;

c) parallel lines are taken to parallel lines. 8G1
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A rule that assigns, to each point in the plane another point in the plane is called a correspondence. Often a
correspondence is defined in terms of coordinates, and written this way: (x, y) → (x′, y′), where the values of
x′, y′ are given by the rule, which may be a formula or a set of instructions. In the case of a formula, we call it the
coordinate rule

Example 1.

Where possible give the coordinate rule for the correspondence.

a. Move a point P to a point P′ on the same ray through the origin that is twice the distance from the
origin.

b. Move every point in the plane 3 units to the right and 1 unit down.

c. Multiply the first coordinate by 2 and the second coordinate by 3.

d. Replace each coordinate of the point by its square.

e. Interchange the two coordinates. How do we describe the transformation in geometric terms?

Solution.

a. If (x, y) are the coordinates of the point P, then the coordinates of any point on the ray from the
origin through P is of the form (rx, ry) for some r > 0 (for a line through the origin represents a
proportional relationship). In our case r = 2, so the coordinate rule is (x, y)→ (2x, 2y).

b. If (x, y) are the coordinates of a point P, then the coordinates of the point three units to the right
and one unit down are (x + 3, y − 1). So the coordinate rule is (x, y)→ (x + 3, y − 1).

c. Here the coordinate rule is (x, y)→ (2x, 3y).

d. The coordinate rule is (x, y)→ (x2, y2).

e. The coordinate rule is (x, y)→ (y, x). This can be described as a flip (reflection) in the line y = x.

A mapping (or transformation T of the plane is a correspondence that has the property that different points go
to different points; that is, for two points P , Q we must also have T (P) , T (Q). This is in fact just what a
map does: it takes a piece of the surface of the earth and represents it, point for point, on the map M. When we
study the effect of a mapping on objects, it is useful to call the object K the pre-image and the set of points to
which the points of K are mapped is the image, denoted T (K). Of the rules described in example 2, rules 1,2,3,6
are mappings, while rules 4 and 5 are not. Before going on, a little more vocabulary. An object is fixed under a
mapping, if the mapping takes the object onto itself. When we say that an attribute is preserved we mean that if
the original object has that attribute, so does the image object.

To be useful, geometrically, a transformation must preserve features of interest: so for example, a scale drawing
of an object changes only the dimensions, and not the shape, of the object. In this section we are interested in
mappings that preserve both the dimension and shape of objects. These are the rigid motions. These are mappings
of the plane onto itself that takes lines to lines and preserve lengths of line segments and measures of angles.
That definition is the starting point of geometry in Secondary 1, but not in 8th grade, where the emphasis is on an
intuitive understanding of rigid motions and their action on figures. So, for us, rigid motions are introduced by
visualization and activities. Take two pieces of transparent paper with a coordinate grid. Place one on top of the
other so that the coordinatizations coincide. A rigid motion is given by a motion of the top plane that does not
wrinkle or stretch the piece of paper.

Given a figure on the plane, we can track its motion by a rigid motion T in this way. Place a piece of transparent
graph paper on top of another so that the coordinate axes coincide. We start with a figure on the bottom piece of
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paper. Copy that figure on the upper piece of paper. Enact the rigid motion T by moving the upper piece of paper.
Now trace the image on the upper piece of paper onto the lower. This figure is the result of moving the given
figure by the rigid motion T . Keep in mind that the lower piece of paper is where the action is taking place; the
upper piece is the action. Students should experiment with these motions using transparent papers. In the process
they will observe that these motions do preserve lines and the measures of line segments and angles. If a figure
doesn’t change; that is T takes the figure onto itself, we say that the figure is fixed. Students may observe that
there are three fundamental kinds of rigid motions characterized by: a) no point is left fixed b) precisely one point
is left fixed, c) there is a line all of whose points are left fixed.

Rigid motions include

• Translation: these are the rigid motions T of the plane that preserve “horizontal” and “vertical”: that is,
horizontal lines remain horizontal, and vertical lines remain vertical. We can describe this as sliding the top
piece of paper over the bottom so that the horizontal and vertical directions remain the same.

• Reflection in a line. Select a line on the plane, this will be the line of reflection. The line separates the plane
into two pieces. For a point in one of the pieces, the reflection moves it to the point on the other piece whose
distance from the line is the same as the distance of the original point on the line. All points on the line
remain in the same place. We effect this with the transparent paper in this way: fold the top transparency
(in three dimensions) along that line so that the sides determined by the line exchange places, and so that
nothing on the line moves.

• Rotation about a point: these are the rigid motions of a plane that leave one point fixed. This point is called
the center of the rotation. The center will not move. All other points are moved along a circle with that
point as center.

Through experimentation with these movements, students should observe that translations do not leave any points
fixed; rotations are rigid motions that leave just one point fixed; for a reflection, all the points on the line of
reflection remain fixed. In the next subsections we will work with these motions in detail and collect together their
properties.

Example 2.

Of the rules in Example 1, which can be represented by a rigid motion?

Solution.

a. This is not a rigid motion: objects change size. Furthermore, it is a transformation that has one
fixed point, but it is not a rotation. In particular. it cannot be illustrated using transparent papers,
for it stretches the top paper.

b. This can be realized as a rigid motion: shift the top piece of paper so that the the origin goes to
the point (3,−1).This is an example of a translation.

c. This is like a) but even more complicated: the horizontal stretch is 2, and the vertical stretch is 3.

d. The squaring rule does not take distinct points to distinct points: for example (1,1) and (-1,-1)
both go to (1,1). In fact, for any positive a and b, all four points (a, b), (−a, b), (a,−b), (−a,−b) go
to the same point (a2, b2).

e. This transformation is realized by reflection in the line y = x.
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Translations

We have defined translation as a rigid motion of the plane that moves horizontal lines to horizontal lines and
vertical lines to vertical lines. Let’s find the coordinate rule for a translation. Starting with a particular translation,
let (a, b) be the coordinates of the image of the origin. We want to show that the pair of numbers (a, b) completely
determines the translation; in fact, the coordinate rule is: (x, y) → (x + a, y + b). For a dynamic visualization, go
to http://www.mathopenref.com/translate.html.

For any point (x, y), draw the rectangle with horizontal and vertical sides with one vertex at the origin and the
other at (x, y) (see Figure 2). The translation takes this rectangle to a rectangle with horizontal and vertical sides
with one vertex at (a, b) and the other at the image of (x, y). Since the lengths of the sides are preserved, the image
rectangle has the same dimensions as the pre-image, and so the vertex across the diagonal from (a, b) has to be
(x + a, y + b). But that is the image of (x, y).

(0, 0)

(x, y)

(a, b)

(x + a, y + b)

Figure 2

We refer to (a, b) as the vector for the translation, for it shows both the direction in which any point is translated,
and also the distance it s translated. Now, in our figure, the point (x, y) was chosen to be in the first quadrant; but
the same reasoning works for any point (x, y).

This reasoning also shows that a translation preserves the slopes of lines (in particular, any line and its image are
parallel). In Figure 3 we show the effect of a translation on the line L, denoting its image by L′. Draw the slope
triangle AVB for the line L as shown. Now, the translation moves that triangle to the triangle A′V ′B′ as shown.
Since the translation preserves “horizontal” and “vertical,” A′V ′B′ is a slope triangle for the line L′. Now since the
translation preserves lengths, the horizontal and vertical legs of the slope triangle on L′ have the same lengths as
the horizontal and vertical legs of the slope triangle on L, so the lines have the same slope. Figure 3 is deliberately
drawn so that L and L′ are not parallel in order to show what goes wrong.

A

B

Vq

p

L

A′

B′

V ′q

p

L′

Figure 3
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Properties of translations:

• A translation preserves the lengths of line segments and the measures of angles.

• For a translation, there is a pair (a, b), called the vector of the translation, such that the image of any point
(x, y) is the point (x + a, y + b).

• Under a translation, the image of a line L is a line L′ parallel to L. Furthermore, translations take parallel
lines to parallel lines. This is because a translation does not change the slope of a line.

• A translation that does not leave every point fixed does not leave any point fixed.

Reflections

Q

L

P

P′

1

2

3
4

Figure 4

Q

L

P

P′

1

2

3

4

Figure 5

A

B

A

B

Figure 6

We have defined a reflection by the action of flipping (or folding) along a line
L, called the line of reflection. A reflection can be described this way: it is
a motion that leaves every point on L fixed, and for a point P not on L, with
P′ its image under the reflection, L is the perpendicular bisector of the line
segment PP′. We now show that reflections as we visualize them (folding the
plane along the line L) have these properties. For a dynamic visualization, go
to http://www.mathopenref.com/reflect.html.

First, it is clear, since it is described by a motion that does not stretch our
paper in any direction, that a reflection preserves the lengths of line segments
and the measure of angles. Let L be the line of reflection for the reflection T ,
let P be a point on one side of L and P′ the image of P under the reflection.
Draw any line from P to a point Q on L. Let P be the image of the point P
under the reflection. This situation is depicted in Figure 4.

Since a reflection takes lines to lines and leaves the point Q fixed, the image
of the segment PQ is the segment P′Q. Since the lengths of these segments
are the same, and Q was chosen as any point on L, we conclude that the points
P and P′ are at the same distance from any point on the line L. Furthermore
the image of ∠1 is ∠4, so they have the same measure, and the image of ∠2 is
∠3, so they have the same measure. In particular, if Q is chosen so that PQ is
perpendicular to L (and thus all angles at Q are the same), since we already
know that the segments PQ and P′Q have the same length, we conclude that
L is the perpendicular bisector of PP′.

Something special happens with reflections that does not happen with other
motions. Notice that for translations and, as we will see, rotations, we do
not have to lift the top piece of transparent paper off the bottom piece; but
with reflections we must do so; we execute what we can call a flip over the
line of the reflection. This has an important effect that is not shared with
translations and rotations. Suppose that A and B are two different points on
a line perpendicular to the line of reflection L. Consider that line as directed
from A to B, and at A draw a little line segment on the left side of the directed
line segment AB. Now reflect this configuration in the line L. The little
line segment now lies on the right of the directed image line segment ′AB′.
Another way of putting this is that the rotation from the direction of AB to
the direction of the small red arrow is counterclockwise in the original, but
clockwise in the image. Since the point in question could have been any point
in the plane, what has happened is that the reflection changed the sense of
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clockwise to counterclockwise everywhere This sense of rotation, clockwise
or counterclockwise, about any point is called orientation.In short, a reflection changes the orientation of the
plane.

Orientation can also be described in terms of angles. Consider an angle ∠AVB (with vertex V) determined by the
rays VA and VB. Looking out at the angle from V we can say that one of the rays is clockwise from the other (in
Figure 7A, the ray VB is clockwise from VA). The reverse direction is called counterclockwise. Now the point
we want to make is that reflections interchange the rays of an angle in the sense of orientation. This is depicted in
Figure 7B, representing a reflection in the line L. The angle ∠AVB goes to the angle A′V ′B′ under the reflection.
But, while the ray VB is clockwise to the ray VA, the image ray V ′B′ is counterclockwise to the image ray V ′A′.
This is what happens when we look in a mirror: our left hand is on the right side of that person in the mirror.

V

A

B

Figure 7A

L
V

A

B

V

A

B

Figure 7B

Properties of Reflections:

• A reflection preserves the lengths of line segments and the measures of angles.

• For a reflection, there is a line L, called the line of the reflection, such that for any point P, L is the perpen-
dicular bisector of the line segment joining P to its image.

• A reflection leaves every point on L fixed, and interchanges the two sides of that line. If the image of a point
P is P′, then, for any point Q on L, the line segments PQ and P′Q are the same.

• A reflection reverses orientation; that is if two rays start at the same point, and ray 2 is clockwise from ray
1, the the image of ray 2 is counterclockwise from that of ray 1.

It is possible to describe all rigid motions by coordinate rules; at this time it is most useful to just do this for
particular special cases.do so for these particular reflections: in the coordinate axes and in the lines y = x and
y = −x.

Example 3.

Find the coordinate rule for the reflections a. the x-axis, b. the y-axis, c. the line y = x, d. the line
y = −x.

Solution.

a. Reflection in the x-axis leaves the x coordinate the same and changes the sign of the y coordinate.
For this reflection takes vertical lines to vertical lines, and so the x-coordinate is fixed. For any
point (x, y) (with y , 0), its image is a point (x, y′) with |y| = |y′| and y , y′; the only possibility is
that y′ is −y.
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b. Reflection in the y-axis leaves the y coordinate the same and changes the sign of the x coordinate.
This has the same argument as for part a.

c. Reflection in the line L : y = x exchanges the coordinates: a point (x, y) goes to the point (y, x).
To show this, let’s start with a point (a, b) not on the line, and thus a , b. See Figure 8 for the
setup. Now draw the horizontal and vertical lines trom (a, b) to the line L. The horizontal line
ends at (b, b) and the vertical line at (a, a). When this triangle gets reflected in the line L, the sides
of the image line will consist of a vertical line segment from (b, b) and a horizontal line segment
fro (a, a). The point of intersection of these lines has the coordinates (b, a) and is the image point
of (a, b).

y = x

(a, a)

(a, b) (b, b)

(b, a)

S

S ′

Figure 8

d. Using the same argument, but being super careful about signs, we can show that reflection in the
line L : y = −x can be described in coordinates as (x, y)→ (−y,−x).

Rotations

We have defined a rotation as a rigid motion that turns a figure about a fixed point, called the center of the rotation.
Since lines are mapped into lines and the center C is fixed, any ray with endpoint C is moved to another ray with
endpoint C. A rotation can be defined by this property: the angle between any ray with endpoint C and the image
of that ray always has the same measure α.

This can be shown using Figure 9: C is a point on the plane, and we are considering a rotation R with center C.
Let A be a point on the horizontal ray from C to the right, and draw its image point A”. As in the figure, denote
the angle between the rays CA and CA′ by double arcs. This is the angle of the rotation. Now take another typical
point B, and denote its image point B′. Then the angle between the ray CB and CB′ is also the angle of rotation,
so it can be indicated by the double arch. Label the angles ∠1, ∠2, ∠3 a shown in Figure 9. What we have seen is
that

∠1 + ∠2 = ∠2∠3,

so ∠1 = ∠3. But ∠1 is the angle between the ray CA andCB and ∠3 is the angle between the ray CA′ and CB′, so
is the image angle , and thus we have shown that rotations preserve the measure of angles.

A

A′

B
B′

Figure 9
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For a dynamic visualization of this discussion, go to http://www.mathopenref.com/rotate.html.

Properties of rotations:

• A rotation preserves the lengths of line segments and the measures of angles.

• For a rotation, there is a point C, called the center of the rotation, and an angle α called the angle of rotation.
For any point P with image Q, the angle ∠PCQ = α.

• A rotation preserves orientation; that is, if two rays start at the same point, and the second is clockwise from
the first, then the image of the second is also clockwise from the first.

Example 4.

Find the coordinate rule for a rotation of a. 90circ counterclockwise, b. 90circ clockwise (usually denoted
by -90circ), c. 180circ, d. -180circ.

Solution.

a. See Figure 10, where P is a point in the first quadrant and Q is the image of P. The rotation moves
triangle I into the position of triangle II. Note that the horizontal leg of triangle I corresponds to
the vertical leg of triangle II, and the vertical leg of triangle I corresponds to the horizontal leg
of the image, triangle II. The lengths of corresponding line segments are the same, but since the
image is in the second quadrant the first coordinate is negative so we must have (x, y) → (−y, x)
as labeled. This argument works as well no matter in which quadrant we start with the point P.

y

x

P

I

y

x

Q
II

Figure 10

b. The same argument works, only now use Figure 11, and we conclude that the coordinate rule for
a clockwise rotation by a right angle (of - 90◦) has to be (x, y→ (y,−x)

Take a moment to note that a rotation by 90◦ takes a line into another line perpendicular to it. We saw in
Chapter 2 that the product of the slope of a line and that of its image under a rotation by 90◦ is -1. Note
that this is demonstrated in figure 10 and 11: the slope of the original line is y/x and that of its image is
−x/y.

c. See figure 12, where P again is in the first quadrant and Q is its image. Since the rotation is by
180◦, P and Q lie on the same line through the origin, and the length of the segment CP and CQ
are the same. In other words, Q is diametrically opposite to P, so is the point (−x,−y). Another
way of seeing this is to recognize that a rotation by 180◦ is a rotation by 90◦ followed by another
rotation by 90◦ . Now rotation boy 90◦ interchanges the coordinates and puts a minus sign in front
of the first one. Thus the succession of two 90◦ rotations can be written in coordinates by

(x, y)→ (−y, x)→ (−x,−y) .

©2014 University of Utah Middle School Math Project in partnership with the
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y

x

P

I

y

x

Q

II

Figure 12

d. The same argument holds for a rotation by -180◦ , so is also given by the coordinate rule (x, y)→
(−x,−y).

Succession of rigid motions

Now, a rigid motion is a transformation of the plane that takes lines into lines and that preserves lengths of line
segments and measures of angles. If we follow one rigid motion by another,we get a third motion which clearly
has the same properties: lines go to lines and measures of line segments and angles do not change. We have
discussed specific kinds of rigid motions: translations, reflections and rotations. It is a fact that every rigid motion
can be viewed as a a succession of motions of one or more of these types; in this section we will look at such
examples.

Example 5.

Given two line segments AB and A′B′ of the same length, there is a rigid motion that takes one onto the
other.

Solution. Figure 12A shows the two line segments, and indicates that we can translate the point B
to the point B′, getting the picture in Figure 12B. Now rotate the line segment AB′ around the point B′

through the angle ∠AB′A′, so that the segments AB′ and A′B′ lie on the same ray. But since the segments
have the same length, the point A lands on A′, and the succession of the translation by the rotation is the
rigid motion taking AB to A′B′.

8MF9-11 ©2014 University of Utah Middle School Math Project in partnership with the
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B

A′

B′
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12A

A

A′

B′

Rotation

12B

Figure 12

Example 6.

Given two circles of the same radius, there is a rigid motion, in fact, a translation, taking one circle onto
the other. In fact, the translation of one center to the other does the trick. Can you explain why? Hint:
use the definition of “circle.”

Example 7.

If two angles have the same measure, there is a rigid motion of one to the other.

Solution. Let AVB and A′VB′ be the two angles. Notice, that the two angles have the same vertex.
Initially, they need not, but a translation of one vertex to the other arranges that. Now, look at figure 13.
We have already taken another liberty: we have labeled the rays of each angle so that the orientation is
consistent: VB is clockwise from VA and VB′ is clockwise from VA′. (If this wasn’t the case originally,
how can we make it so?) Now rotate with center V so that the ray VA lands on the ray VA′. Since the
original angles had the same measure, and we have set up the orientation correctly, the ray VB falls on
the ray VB′. The combination of the translation and rotation is the rigid motion landing one angle onto
the other.

A

B

A′

B′

Figure 13

Example 8.

Under what conditions can we find a rigid motion of one rectangle onto another?

Solution. . First of all, rigid motions preserve lengths and angles, so any rigid motion will alway
move a rectangle to another rectangle whose side lengths are the same. So, if there is a rigid motion of
rectangle R onto rectangle R′, the lengths of corresponding sides must be the same.

But now -to answer the question - if this condition holds, then there is a rigid motion of one rectangle
onto the other. We will show this using Figure 14 of two rectangles ABCD and A′B′C′D′ with corre-
sponding sides of equal lengths. We have labeled the vertices so that the routes A → B → C → D and
A′ → B′ → C′ → D′ are both clockwise. (Can you check that we can really do that?). By example

©2014 University of Utah Middle School Math Project in partnership with the
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7, we can find a rigid motion taking the angle DAB onto the angle D′A′B′ (translate A to A′ and then
rotate). Since the lengths of corresponding sides are equal, that tells us that D lands on D′ and B onto
B′. Since both figures are rectangles, that forces C onto C′, so the rectangles are congruent.

B

A

D

C

B′

A′

D′

C′

Figure 14

Example 9.

Since reflections reverse the orientation on the plane, the succession of two reflections preserves orien-
tation, so has to be a pure rotation or a pure translation or a combination of the two. How doe we know
when we get a translation, or when we get a rotation?

Solution. Let R be the reflection in the line L, S the reflection in the line L′, and T the combined
motion: R followed by S .

a. If the lines L and L′ are the same line, then S just undoes what R did, and the succession of R by S
leaves every point where it is. So, in this case, the succession of reflections is the identity motion
- no motion at all.

b. Suppose that the lines L and L′ are different, and intersect in a point C . Then C is fixed point
for each, so is fixed under the succession T . Suppose T had another fixed point P. Then the first
reflection (R) sends P to another point P′ and S returns P′ to P. Well, that means that P and P′

are reflective images in both L and L′, and that can only be if the lines are the same. Since they
are not, T has only one fixed point: C. But the only motions with one fixed point are the rotations.

c. Now, if L and L′ are different lines and have no point of intersection, then they are parallel. In this
case, the transformation T formed by the succession of the two reflections has no fixed points.
For if T (P) = P, this tells us that S takes R(P) back to P, but the only reflection that does that is
R. Since the lines are different, S , R, so there is no point P such that T (P) = P; that is there are
no fixed points. Only translations are without fixed points, so T is a translation.

Example 10.

Let R be the reflection in the y axis, and S , reflection in the x axis.

a. Describe the rigid motion T defined by the succession: R followed by S ?

b. Do the same problem with either of the lines of reflection replaced by the line y = x.

Solution.

a. Reflection in the y-axis changes the sign of the first coordinate, and reflection in the x-axis changes
the sign of the second coordinate. So, the effect of both is to change the sign of both coordinates.
The coordinate rule, then, for R followed by S (or the other way around) is (x, y)→ (−x,−y)
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b. Now, let’s call U reflection in the line y = x. That effect is to interchange coordinates. So, R
followed by U is given, in coordinates by: (x, y→ (−x, y)→ (y,−x), which is rotation by -90◦. U
followed by S is, in coordinates, given by: (x, y)→ (y, x)→ (y,−x). The same answer!

Suppose we interchange the orders of R, S and U, do the answers change?

Example 11.

Let R be reflection in the line x = 1, and S reflection in the line x = 2. Describe the translation T , the
succession R followed by S ?

Solution. Both R and S take vertical lines to vertical lines, and take horizontal lines to themselves, so
that is true of the succession T . Now, R takes (0,0) to (2,0) and S leaves (2,0) alone, so T takes (0,0) to
(0,2). Since a translation does to all points what it does to one, we can say, in coordinates, that T takes
(x, y) to (x + 2, y).

Properties of a succession of two rigid motions:

• Rotations: if they have the same center then the succession of the two is a rotation with that center, and
whose angle is the sum of the angles of the two given rotations.

• Translations: if T is a translation by (a, b), and T ′ the translation by (a′, b′), then the succession of one after
the other is the translation by (a + a′, b + b′).

• Reflections:

• If the lines of the reflection are the same, we get the identity (that is, there is no motion: every point stays
where it is.

• If the lines of the reflection are parallel, we get a translation.

• If the lines of the reflection intersect in a point, we get a rotation about that point.

Congruence

Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a
sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits
the congruence between them. 8G2

Two figures are said to be congruent if there is a rigid motion that moves one onto the other. In high school
mathematics the topic of congruence will be developed in a coherent, logical way, giving students the tools to
answer many geometric questions. In 8th grade we are much more freewheeling, discovering what we can about
congruence through experimentation with actual motions. In this section we will list some possible results that
the class may discover; many classes will not discover some of these, but instead discover other interesting facts
about congruence.

Example 12.

Using transparencies, decide, among the four triangles in Figure 15 , which are congruent.

Solution. Translating and then rotating appropriately, we can put triangle I on top of triangle II, so
these are congruent. When we do the same, moving triangle I to triangle III, we find that the shortest
leg of triangle I is shorter than the shortest leg of triangle II; since the short legs must correspond, these
triangles are not congruent. Now, as for triangle IV, we can translate the right angle of triangle I to that
of triangle IV. Since both short legs are vertical, we see they coincide. If we now reflect in that short leg,
we land right on triangle IV. Thus, I and IV are also congruent.

©2014 University of Utah Middle School Math Project in partnership with the
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I
II

III

IV

Figure 15

Example 13.

All points in the plane are congruent.

Discussion. This may seem unnecessary to point out, but it does state a fact: given any points P and
Q in the plane, there is a rigid motion taking P to Q. Actually, there are many. First of all, there is the
translation of P to Q, and we can follow that by any rotation about the point Q. There is also a reflection
of P to Q: fold the paper in such a way that P lands on top of Q. Then the crease line of the fold is the
perpendicular bisector of the line segment PQ, and reflection in this line takes P to Q.

The following have been observed in the preceding section:

• Two line segments are congruent if they have the same length; otherwise they are not.

• Two angles are congruent if they have the same measure.

• Two rectangles are congruent if the side lengths of corresponding sides are the same. In particular, all
squares of the same area are congruent, but not all rectangles of the same area are congruent.

Finding and demonstrating criteria for the congruence of triangles is a major topic in Secondary I; as an illustration,
here we show how one such criterion, known as S S S , follows from the properties of rigid motions.

Example 14.

Show S S S : Given two triangles, ABC and A′B′C′, if corresponding sides have the same length, then
the triangles are congruent.

Solution. What we have to find, given the two triangles, is a sequence of rigid motions that takes one
onto the other. A good way to start is to try to create an example where this fails. Students will conclude
that this is true, and find an explanation, in terms of the rigid motions desired. One such could be along
the following lines. First of all, to make the argument more clear: let’s designate the sides of ABC by
the lower case version of the label of the opposite vertex: so, a is the side opposite vertex A , and so
forth. Do the same for triangle A′B′C”. Since line segments of the same length are congruent, we can
move a onto a′ by a rigid motion. Now draw a circle with center at C and radius of length b as in Figure
16. Since two circles intersect in at most two points, the circle of radius c centered at B intersects our
circle either in the point A, or the point of reflection of A′ in the line BC. Triangle A′B′C” has to be one
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of these triangles, one of which is the image of ABC. But the two triangles shown are congruent (by
reflection in the line BC. So the original triangles are congruent.

V

A

B
V ′

A′

B′

Figure 16

Section 9.2. Dilations and Similarity

Understand similarity in terms of rigid motions and dilations using ruler and compass, physical models, trans-
parencies, geometric software. 8G3,4

Properties of dilations

Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordi-
nates 8G3.

Verify that dilations take lines into lines, takes parallel lines to parallel lines and that a line and its image under
a dilation are parallel.

Recall that in chapter 2, in the section on the slope of a line, we introduced the idea of a dilation in order to show
that the slope of a line can be calculated using any two points. Let’s start by reviewing that discussion.

A dilation is given by a point C, the center of the dilation, and a positive number r, the factor of the dilation. The
dilation with center C and factor r moves each point P to a point P′ on the ray CP so that the ratio of then length
of image to the length of original is r: |CP′|/|CP| = r.

Note that if r = 1, nothing changes; this “‘dilation” is called the identity. If r > 1, everything expands away from
the center C, and if r < 1 everything contracts toward C.

The important fact about a dilation is that, for every line segment, the length of its image is r times the length
of the segment. For students at this point, this will be easy to verify by experimentation, but the reason is not so
obvious. In the next chapter we’ll see this follows from the Pythagorean theorem; but it is also a fact of Euclidean
geometry, as will be shown in the appendix.

Dilations are also directly connected to scale changes. Suppose that we start with an image of a rectangle, where
the scale is in yards, as in figure 17(a). If we want more detail, we create a new image where the scale is in feet.
Then, each interval (representing a yard) in the original image must be replicated across three intervals (each of
which represents a foot) of the new image, and so our change of image is a scaling with scale factor 3. The result
is figure (b). But, if instead we translate vertex A to vertex A′ so (a) lands on the dashed rectangle in figure (b),
then a dilation with center A′ and factor 3 takes the small rectangle to the large one. Note that each length has
been multiplied by 3, while the area of the larger rectangle is 9 times the area of the of the original rectangle. This
will of course be true of every dilation of any figure: lengths are multiplied by the scale factor r, while areas are
multiplied by the square of the scale factor, r2.
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B

C

B′

C′

Figure 17A

Now we find the coordinate rule that expresses a dilation with center the origin. Suppose the factor of the dilation
is r. Then the length of any interval is multiplied by r, so that the point (x, 0) goes to the point (rx, 0) and the point
(0, y) goes to the point (0, ry). It follows (see figure 18) that (x, y)→ (rx, ry).

P(x, y)

(x, 0)

(0, y)

P(rx, ry)

(rx, 0)

(0, ry)

Figure 8

Properties of the dilation with center C and factor r:

• If P is moved to P′, then |CP′|/|CP| = r.

• If P is moved to P′ and Q is moved to Q′, then |Q′P′|/|QP| = r.

• The dilation takes parallel lines to parallel lines.

• A line and its image are parallel.

• An angle and its image have the same measure.

All of these facts, except the last, were explored through examples in Chapter 2. Let’s complete by showing that
an angle and its image under a dilation are actually congruent. In figure 19, suppose that ∠A′V ′B′ is obtained from
∠AVB by a dilation. First of all, corresponding lines are parallel. Now, translate V to V ′. Since corresponding
lines under a translation are parallel, the ray VA must go to the ray V ′A′ and the ray VB to the ray V ′B′. Well,
then the translation T takes the angle ∠AVB to the angle ∠A′V ′B′, so they have the same measure.

Similarity

Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a
sequence of rotations, reflections, translations and dilations; given two similar two-dimensional figures, describe
a sequence that exhibits the similarity between them. 8G4
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Figure 19

Two figures are said to be similar if there is a sequence of rigid motions and dilations that takes one figure onto
the other. So, for example, the triangles in figure 14, the rectangles in figure 15 and the squares and triangles in
figure 16 are similar in pairs, since there is a dilation with center the origin that places one on top of the other.
Note that, if the dilation that places T onto T ′ has factor r, then the factor of the dilation placing T ′ onto T is r−1.
Let’s list these facts about similarity:

Similar Figures

• Congruent figures are similar. This is because the “sequence of rigid motions and dilations” need not include
any dilations, in which case it exhibits a congruence.

• Any two points or angles are similar; because they are congruent.

• Any two line segments or rays are similar. Let AB and CD both be either line segments or rays. First
translate A to the point C, and then rotate the image of AB so that it and CD lie on the same line. First let’s
take the case of rays. Either the rays coincide, or they form the two different rays of the same line. In the
second case, another rotation by 180◦ makes the rays coincide.

Now let’s look at two line segments. Move the segment AB, by rigid mottons as above, so thatA falls on C,
and AB and CD now lie on the same ray starting from C. Let r = |CD|/|AB|. Then the dilation with center
C and factor r places AB on top of CD.

• Any two circles are similar. Let C be the center of one of the circles and R its radius; and C′ the center of the
other, and R′ its radius. Translate C to C′. Now the circles are concentric. Let r = R′/R. Then the dilation
of factor r places the first circle on top of the other.

• For two similar triangles, the ratios of corresponding sides are all the same. This is because rigid motions
do not change lengths, and dilations change all lengths by the same number, the factor of the dilation.

• For two similar triangles, the measure of corresponding angles is the same. This is because rigid motions
and dilations do not change the measure of angles.

We end this discussion by showing that the the last statement is actually a criterion for similarity of triangles: if
corresponding angles of triangles ABC and A′B′C′ have the same measure, the triangles are similar. We’ll need
another interesting fact for this:

Example 15.

If corresponding sides of triangles ABC and A′B′C′ are parallel, then the triangles are similar.

First, translate A to A′. Since a translation takes a line into a line parallel to it, the line of AB is moved
to the line of A′B′ and the line of AC is moved to the line of A′C′, and the image of AB is parallel to
A′B′, giving us the picture shown in Figure 20.

Now, for r = |AB′|/|AB|, the dilation with center A and factor r takes ABC onto A′B′C′ .
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Example 16.

If corresponding angles of triangles ABC and A′B′C′ have the same measure, the triangles are similar.

Since any two angles of the same measure are congruent, we can find a sequence of rigid motions that
takes ∠CAB onto ∠C′A′B′. This puts us in the situation of figure 18, except that we do not know that the
segments BC and B′C′ are parallel. But we do know (it is part of the hypothesis) that ∠ABC and ∠AB′C′

are equal. That is enough; apply the dilation with center at A and factor r = |AB′|/|AB|. This takes B to
B′, and since the angle doesn’t change, the ray BC lands on the ray B′C′. So the image of C under that
dilation lies on the line of B′C′ and the line of AC′, so it has to be C′. Thus the first triangle lands on
top of the second triangle, and so they are similar,

Summary

Since the properties of the rigid motions and dilations have been gathered in the text, we shall just summarize the
coordinate rules for the rigid motions and similarities that we have discussed.

• The coordinate rule for a translation by the vector (a, b) is (x, y)→ (x + a, y + b).

• The coordinate rule for the reflection in the x-axis is (x, y)→ (x,−y).

• The coordinate rule for the reflection in the y-axis is (x, y)→ (−x, y).

• The coordinate rule for the reflection in the line x = y is (x, y)→ (y, x).

• The coordinate rule for the rotation by 90◦ is (x, y)→ (y, x).

• The coordinate rule for the rotation by 180◦ is (x, y)→ (−x,−y).

• The coordinate rule for the dilation with center the origin and factor r is (x, y)→ (rx, ry).
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Chapter 10
Geometry: Angles, Triangles and Distance

In section 1 we begin by gathering together facts about angles and triangles that have already been discussed
in previous grades. This time the idea is to base student understanding of these facts on the transformational
geometry introduced in the preceding chapter. As before, here the objective is to give students an informal and
intuitive understanding of these facts about angles and triangles; all this material will be resumed in Secondary
Mathematics in a more formal and logically consistent exposition.

Section 2 is about standard 8G6: Explain a proof of the Pythagorean Theorem and its converse. The language of
this standard is very precise: it does not say Prove... but it says Explain a proof of..., suggesting that the point for
students is to articulate their understanding of the theorem; not to demonstrate skill in reciting a formal proof. Al-
though Mathematics tends to be quite rigorous in the construction of formal proofs, we know through experience,
that informal, intuitive understanding of the ”why” of a proof always precedes its articulation. Starting with this
point of view, the student is guided through approaches to the Pythagorean theorem that make it believable, instead
of formal arguments. In turn, the student should be better able to explain the reasoning behind the Pythagorean
theorem, than to provide it in a form that exhibits form over grasp.

In Chapter 7, in the study of tilted squares, this text suggests that by replacing specific numbers by generic ones,
we get the Pythagorean theorem. We start this section by turning this suggestion into an “explanation of a proof,”
and we give one other way of seeing that this is true. There are many; see, for example

jwilson.coe.uga.edu/EMT668/emt668.student.folders/HeadAngela/essay1/Pythagorean.html

The converse of the Pythagorean theorem states this: if a2 + b2 = c2, where a, b, c are the lengths of the sides
of a triangle, then the triangle is a right triangle, and the right angle is that opposite the side with length c. The
Euclidean proof of this statement is an application of S S S for triangles. Although students played with S S S in
Chapter 9, here we want a more intuitive and dynamic understanding. Our purpose here is to encourage thinking
about dynamics, which becomes a central tool in later mathematics. We look at the collection of triangles with
two side lengths a and b with a ≥ b. As the angle at C grows from very tiny to very near a straight angle, the
length of its opposing side steadily increases. It starts out very near a − b, and ends up very near a + b. There is
only on triangle in this sequence where a2 + b2 is precisely c2.

In the final section, we use the Pythagorean Theorem to calculate distances between points in a coordinate plane,
This is what the relevant standard asks: it does not ask that students know the “distance formula.” The goal here is
that students understand the process to calculate distances: this process involves right angles and the Pythagorean
theorem and students are to understand that involvement. Concentration on the formula perverts this objective.
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Section 10.1 Angles and Triangles

Use informal arguments to understand basic facts about the angle sum and exterior angle o triangles, about
the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of
triangles. 8G5

In this section, we continue the theme of the preceding chapter: to achieve geometric intuition through exploration.
We start with geometric facts that students learned in 7th grade or earlier, exploring them from the point of view
of rigid motions and dilations.

(1). Vertical angles at the point of intersection of two lines have the same measure.

The meaning of vertical is in the sense of a vertex. Thus, in Figure 1, the angles at V with arrows are vertical
angles, as is the pair at V without arrows.

V
A

B

C

D

Figure 1

Now rotation with vertex V through a straight angle (180◦) takes the line AC into itself. More specifically, it takes
segment VA to VC and VB to VD, and so carries ∠AVB to ∠CVD,. This rotation therefore shows that the angles
∠AVB and ∠CVD are congruent, and thusbhave the same measure.

The traditional argument (and that which appears in grade 7) is this: both angles ∠AVB and ∠CVD are supple-
mentary to ∠BVC (recall that two angles are supplementary if they add to a straight angle), and therefore must
have equal measure. However, in grade 8 we want to understand measure equality in terms of congruence, and
congruence in terms of rigid motions.

(2). If if two lines are parallel, and a third line L cuts across both, then corresponding angles at the points
of intersection have the same measure.

P′

A′

L′

L

P′′

A′′

L′′

B′′

C′′

Figure 2

In Figure 2, the two parallel lines are L′ and L′′, and the corresponding angles are as marked at P′ and P′′. The
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translation that takes the point P′ to the point P′′ takes the line L′ to the line L′′ because a translation takes a line
to another one parallel to it, and by the hypothesis, L′′ is the line through P′′ parallel to L′. Since translations
also preserve the measure of angles, the corresponding angles as marked (at P′ and P′′) have the same measure.
Now, because of (1) above, that opposing angles at a vertex are of equal measure, we can conclude that the angle
denoted by the dashed arc is also equal to the angles denoted by the solid arc.

This figure also demonstrates the converse statement:

(3). Given two lines, if a third line L cuts across both so that corresponding angles are equal, then the two
lines are parallel.

To show this, we again draw Figure 2, but now the hypothesis is that the marked angles at P′ and P′′ have the same
measure. Since translations preserve the measure of angles, the translation of P′ to P′′ takes the angle ∠A′P′P′′

to ∠B′′P′′A′′, and so the image of L′ has to contain the ray P′′B′′, and so is the line L′′. Since the line L′′ is the
image of L′ under a translation, these lines are parallel.

(4). The sum of the interior angles of a triangle is a straight angle.

In seventh grade, students saw this to be true by drawing an arbitrary triangle, cutting out the angles at the ver-
tices, and putting them at the same vertex. Every replication of this experiment produces a straight angle. This
experiment is convincing that the statement is true, but does not tell us why it is true.

We have two arguments to show why it is true. The first has the advantage that it uses a construction with which the
student is familiar (that to find the area of a triangle) and thus reinforces that idea. The second has the advantage
that it can be generalized to polygons with more sides. First, draw a triangle with a horizontal base (the triangle
with solid sides in Figure 3). Rotate a copy of the triangle around the vertex B, and then translate the new triangle
upwards to get the result shown in Figure 3, in which the triangle with dashed sides is the new position of the
copied triangle. We have indicated the corresponding angles with the greek letters α, β, γ. Since the angles ∠ABC
and ∠C′B′A” have the same measure (β), the lines AB and B′A′ are parallel. Since they are parallel, the angles
B′A′C′ and ∠A′C′E have the same measure Now look at the point B = C′: the angles α, β, γ. form a straight angle.

A B = C′

C = B′ A′

α

γ

β

α

γ

β

Figure 3

An alternative argument is based on Figure 4 below:

A

A′′

B B′

C
C′′

α

γ

β

α′

γ′

β′

Figure 4

In this figure we have named the “exterior angles” of the triangle, α′, β′, γ′, each of which is outside the triangle
formed by the extension of the side of the triangle on the right. If we were to walk around the perimeter of the
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triangle, starting and ending at A looking in the direction of A′, we would rotate our line of vision by a full circle,
360◦. As this is the sum of the exterior angles, we have

α′ + β′ + γ′ = 360◦ .

But each angle in this expression is supplementary to the corresponding angle of the triangle, that is, the sum of
the measures of the angle is 180◦. So, the above equation becomes

(180◦ − α) + (180◦ − β) + (180◦ − γ) = 360◦ ,

from which we get α + β + γ = 180◦.

We can generalize the second argument to polygons with more sides. Consider the quadrilateral in Figure 5.

A

B

C

D

α

γ

β

δ

Figure 5

By the same reasoning as for the triangle, the sum of the exterior angles of the quadrilateral is also 360◦ and the
sum of each interior angle and its exterior angle is 180◦. But now there are four angles, so we end up with the
equation

(180◦ − α) + (180◦ − β) + (180◦ − γ) + 180◦ − δ) = 360◦ , or 720◦ − (α + β + γ + δ) = 360◦ .

(5). The sum of the interior angles of a quadrilateral is 360◦.

Can you now show that, for a five sided polygon, the sum of the interior angles of a quadrilateral is 540◦? Can
you go from there to the formula for a general polygon?

(6). If two triangles are similar, then the ratios of the lengths of corresponding sides is the same, and
corresponding angles have the same measure.

(7). Given two triangles, if we can label the vertices so that corresponding angles have the same measure,
then the triangles are similar.

A

B

C

A′

B′

C′

Figure 6a

We saw in Chapter 9 why (6) is true. Let us look more closely at statement (7).
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A = A′

B

C
B′

C′

Figure 6b

Figure 6a shows a possible configuration of the two triangles. By a translation, we can place point A on top of
pint A′ to get Figure 6b. Now move the smaller triangle by a rotation with center A = A′, so that the point C lands
on the segment A′C′. Since the angles ∠CAB and ∠C′A′B′ have the same measure, the rotation must move line
segment AB so that it lies on A′B′. Now, since ∠ACB and ∠A′C′B′ have the same measure, the line segments CB
and C′B′ must be parallel (by Proposition 2). Now the dilation with center A that puts point C on C′, puts triangle
ABC onto triangle A′B′C′, so they are similar.

The argument is not fully completed, for the configuration of Figure 6a is not the only possibility. In FIgure 6a,
C is between A and B if we traverse the edge of the triangle in the clockwise direction, and the same is true for
∆A′B′C′. However, this is not true in the configuration of Figure 7. Now how do you find the desired similarity
transformation?

A

B

C

A′

B′

C′

Figure 7

Again, we translate so that the points A and A′ coincide. But now, the rotation that puts the line segment AB on the
same line as A′B′ doesn’t lead to the configuration of Figure 6b and the smaller triangle cannot be rotated so that
corresponding sides lie on the same ray. But this is fixed by reflecting the smaller triangle in the line containing
the segment AB and A′B′, and now we are in the configuration of Figure 6b. Indeed, we could have started with a
reflection of the small triangle in the line through AC, and then followed the original argument.

Have we covered all cases? The answer is yes: the difference between Figure 6a and that of Figure 7 is that of
orientation. So, if we start again with the two triangles ABC and A′B′C′with corresponding angles of the same
measure, then we should first ask: is the orientation A→ B→ C the same as the orientation A′ → B′ → C′ (both
clockwise or both counter clockwise)? If so, we are in the case of Figure 6a. If not, after reflection in any side of
triangle ABC puts us in the case of Figure 7.

Section 10.2 The Pythagorean Theorem.

Explain a proof of the Pythagorean Theorem and its converse. 8G6

In Chapter 7 we constructed “tilted” squares of side length, c whose area c2 is a specific integer. If c is not an
integer, we have observed that it cannot be expressed as a rational number (a quotient of integers). At the end of the
discussion we mentioned that these specific examples generalized to a general theorem (known as the Pythagorean
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theorem) relating the lengths of the sides of a right triangle. This mathematical fact is named after a sixth century
BCE mathematical society (presumed to be led by someone named Pythagoras). It is clear that this was known
to much earlier civilizations: the written record shows it being used by the Egyptians for land measurements,
and an ancient Chinese document even illustrates a proof. But the Pythagorean Society was given the credit for
this by third century BCE Greek mathematicians. The Pythagorean Society is also credited with the discovery
of constructible line segments whose length cannot be represented by a quotient of integers (in particular, the
hypotenuse of a triangle whose legs are both the same integer. ). The legend is that the discoverer of this fact was
sacrificed by the Pythagoreans. We mention this only to highlight how much the approach to mathematics has
changed in 2500 years; in particular this fact, considered “unfortunate” then, is now appreciated as a cornerstone
of the attempt to fully understand the concept of number and its relationship to geometry.

Let’s pick up with the discussion at the end of Chapter 7, section 1. There we placed our tilted squares in a
coordinate plane so as to be able to more easily see the relationship between the areas of the squares and its
associated triangles. Here, in order to stress that the understanding of the Pythagorean theorem does not involved
coordinates, we look at those Chapter 7 arguments in a coordinate free plane. For two positive numbers, a and b,
construct the square of side length a + b. This is the square bounded by solid lines in Figure 8, with the division
points between the lengths a and b marked on each side. Draw the figure joining these points - this is the square
with dashed sides in Figure 8. In Chapter 7 we observed that this is a square; now, let us check that this is so. First
of all, triangle I is congruent to triangle II: translate triangle I horizontally so that the side labeled “a” lies on the
side of triangle II labeled “b.” Now rotate triangle I (in its new position) by 90◦. Then the sides labeled a and b
coincide and in the fact the triangles coincide, so are congruent. In the same way we can show that triange II is
congruent to triangle III, and III is congrurent to IV.

IV II

IIII

a b

a

b

ab

a

b
c

c
c

c

Figure 8

We conclude that the dashed lines are all of the same length, telling us that the dashed figure is a rhombus. To be
a square, we have to show that one of the corner angles is a right angle. Lets concentrate on the vertex marked A,
where the angle is marked γ. We see that

α + γ + β = 180◦ .

But the sum of the non-right trianges of a right triange is 90◦, and these are, by the congruence of triangles I and
IV, the same as the angles marked α and β; that is

α + β = 90◦ .

So, it follows that γ = 90◦.

In Chapter 7 we used these facts to calculate the area of the tilted square, which is c2, where c is the length of the
hypotenuse of the four triangles. By reconfiguring the picture as in Figure 9, we can show that this is also a2 + b2.
This is known as the Chinese proof of the Pythagorean theorem, and records show that it precedes the Pythagorean
Society by close to 1000 years.
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Although this is a “proof without words,” here is a description of how it goes: For the original square of side
length a + b is now subdivided in a different configuration: the bottom left corner is filled with a square of side
length b, and the upper right corner, by a square of side length a.

IV

III

I
II

b

a

a

b

Figure 9

The rest of the big square of Figure 9 consists of four triangles, so what is outside those triangles has area a2 + b2.
But each of those triangles is congruent to the triangle of the same label in Figure 8. Thus what is outside those
four triangles must have area c2. This result is:

The Pythagorean Theorem:
a2 + b2 = c2

for a right triangle whose leg lengths are a and b and whose hypotenuse is of length c.

It is instructive to give another “proof without words” of the Pythagorean theorem; this one is due to Bhaskara, a
12th century CE mathematician in India. Start with the square of side length c (so of area c2, and draw the right
triangles of leg lengths a and b, with hypotenuse a side of this square, as shown in the top left of Figure 10. Now
reconfigure these triangles and the interior square as in the image on the right. Since it is a reconfiguration, it still
has area c2. But now, by redrawing as in the lower image, we see that this figure consists of two squares, one of
area a2 and the other of area b2.

c

c

c

c
a

b

c

a

bc

b − a

b − a

a

a

b

b

Figure 10

Example 1.

a. A right triangle has leg lengths 6 in and 8 in. What is the length of its hypotenuse?
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Solution. Let c be the length of the hypotenuse. By the Pythagorean theorem, we know that

c2 = 62 + 82 = 36 + 64 = 100 ,

so c = 10.

b. Another triangle has leg lengths 20 in and 25 in. Give an approximate value for the length of its
hypotenuse.

Solution.
c2 = 202 + 252 = 400 + 625 = 1025 = 25 × 41 .

So, c =
√

25 × 41 = 5 ×
√

41. Since 62 = 36 and 72 = 49, we know that
√

41 is between 6 and 7;
probably a bit closer to 6. We calculate” 6.42 = 40.96, so it makes good sense to use the value 6.4 to
approximate

√
41. Then the corresponding approximate value of c is 5 × 6.4 = 32.

Example 2.

a. The hypotenuse of a triangle is 25 ft, and one leg is 10 ft long. How long is the other leg?

Solution. Let b be the length of the other leg. We know that 102+b2 = 252, or b2+100 = 625, and thus
b2 = 525. We can then write b =

√
525. If we want to approximate that, we first factor 525 = 25 × 21,

sp b = 5
√

21 We can approximate
√

21 by 4.5 (4.52 = 20.25). and thus b is approximately given by
5 × 4.5 = 22.5.

b. An isosceles right triangle has a hypotenuse of length 100 cm. What is the leg length of the
triangle.

Solution. Referring to to the Pythagorean theorem, we are given: a = b (the triangle is isosceles), and
c = 100. So, we have to solve the equation 2a2 = 1002. Since 1002 = 104, we have to solve 2a2 = 104,
or a2 = 5 × 103. Write 5 × 103 = 50 × 102, which brings us to a =

√
50 × 102 = 10 ×

√
50. Since

72 = 49, we can give the approximate answers a = 10 × 7 = 70.

Example 3.

A B
D

C

h h

h

Figure 11

Figure 11 is that of an isosceles right triangle, ∆ABC, lying on top of a square. The total area of the
figure is 1250 sq. ft. What is the length of the altitude (CD) of the triangle? Note: This problem may be
beyond the scope of 8th grade mathematics, but it still may be worth discussing, since it illustrates how
the interaction of geometry and algebra works to solve a complex structural problem.

Solution. Since the triangle is isosceles, the measure of ∠CAD and ∠CBD are both 45◦. The altitude
of a triangle is perpendicular to the base’; from which we conclude that the triangles ∆CAD and ∆CBD
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are congruent. Since we want to find the length of CD, let’s denote that number by h. This gives us the
full labelling of Figure 11. The information given to us is about area, so let’s do an area calculation.
Since the length of a side of the square is 2h, its area is 4h2. The area of the triangle on top of the square
(one-half base times altitude) is 1

2 (2h)(h) = h2. So, the area of the entire figure is 4h2 + h2 = 5h2, and
we are given that that is 1250 sq. ft. We then have

5h2 = 1250 so h2 = 250 = 25 × 10 and h = 5
√

10 .

Now the Pythagorean theorem describes a relation among the lengths of the sides of a right triangle; it is also true
that this relation describes a right triangle. This is what is called the converse of the Pythagorean theorem. The
idea of “converse” is important in mathematics. Most theorems of mathematics are of the form : under certain
conditions we must have a specific conclusion. The converse asks: if the conclusion is observed, does that mean
that the given conditions hold, that is, does the equation a2 + b2 = c2 relating the sides of a triangle tell us that the
triangle s a right triangle?

Converse of the Pythagorean Theorem:

For a triangle with side lengths a, b, c if a2 + b2 = c2, then ∠ACB is a right angle.

In order to see why this is true, we show how to draw all triangles with two side lengths a and b. Let’s suppose
that a ≥ b. On a horizontal line, draw a line segment BC of length a. Now draw the semicircle whose center is C
and whose radius is b (see Figure 12). Then, any triangle with two side lengths a and b is congruent to a triangle
with one side BC, and the other side the line segment from C to a point A on the circle.

C

A

B a

c
b

Figure 12

Now, as the line segment AC is rotated around the point C, the length c of the line segment BA continually
increases. When AC is vertical, we have the right triangle, for which the length c =

√
a2 + b2. We conclude that

for any triangle with side lengths a and b, the length c of the third side is either less than
√

a2 + b2 (triangle is
acute), or greater than

√
a2 + b2 (triangle is obtuse) except for the right triangle(where the segment AB is vertical).

Example 4.

Draw a circle and its horizontal diameter (AB in Figure 13). Pick a point C on the circle. Verify by
measurement that triangle ABC is a right triangle.

Solution. For the particular triangle the measures of the side lengths, up to nearest millimeter are:
AB = 44 mm, BC = 18 mm, AC = 40 mm. Now, calculate: BC2 + AC2 = 324 + 1600 = 1924, and
AB2 = 1936. This is pretty close. If all students in the class get this close, all with different figures, then
that is substantial statistical evidence for the claim that the triangle is always a right triangle.
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A B

C

Figure 13

Section 10.3 Applications of the Pythagorean Theorem.

Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathe-
matical problems in two and three dimensions. 8G7

Example 5.

What is the length of the diagonal of a rectangle of side lengths 1 inch and 4 inches?

Solution. The diagonal is the hypotenuse of a right triangle of side lengths 1 and 4, so is of length
√

12 + 42 =
√

17.

Example 6.

Suppose we double the lengths of the legs of a right triangle. By what factor does the length of the
diagonal change, and by what factor does the area change?

Solution. This situation is illustrated in Figure 14, where the triangles have been moved by rigid
motions so that they have legs that are horizontal and vertical, and they have the vertex A in common.
But now we can see that the dilation with center A that moves B to B′ puts the smaller triangle on top of
the larger one. The factor of this dilation s 2. Thus all length change by the factor 2, and area changes
by the factor 22 = 4.

A B B′

C

C′

Figure 14

Example 7.

An 18 ft ladder is leaning against a wall, with the base of the ladder 8 feet away from the base of the
wall Approximately how high up the wall is the top of the ladder?

Solution. The situation is visualized in Figure 15. The configuration is a right triangle with hy-
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potenuse (the ladder) of length 18 feet, the base of length 8 feet, and the other leg of length h. By the
Pythagorean theorem, we have

h2 + 82 = 182 or h2 + 64 = 324 .

Then h2 = 260. Since we just want an approximate answer, we look for the integer whose square is
close to 260: that would be 16 (162 = 256). So, the top of the ladder hits the wall about 16 feet above
the ground.

18′

8′

h

Figure 15

Example 8.

A room is in the shape of a rectangle of width 12 feet, length 20 feet, and height 8 feet. What is the
distance from one corner of the floor (point A in the figure) to the opposite corner on the ceiling?

A

C

B

12′
20′

8′

Figure

Solution. In Figure 16, we want to find the length of the dashed line from A to B. Now, the dash-dot
line on the floor of the room is the hypotenuse of a right triangle of leg lengths 12 ft and 20 ft. So,
its length is

√
122 + 202 = 23.3. The length whose measure we want is the hypotenuse of a triangle

∆ACB whose leg lengths are 23.3 and 8 feet. Using the Pythagorean theorem again we conclude that the
measure of the line segment in which we are interested (AB) is

√
82 + 23.32 = 24.64; since our original

data were given in feet, the answer: 25 ft. should suffice.

Example 9.

What is the length of the longest line segment in the unit cube?

Solution. We can use the same figure as in the preceding problem, taking that to be the unit cube.
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Then the length of the diagonal on the bottom face is
√

12 + 12 =
√

2 units, and the length of the

diagonal AB is
√

12 + (
√

2)2 =
√

3.

These examples show that we can use the Pythagorean theorem to find lengths of line segments in space. Given
the points A and B, draw the rectangular prism with sides parallel to the coordinate planes that has A and B as
diametrically opposite vertices (refer to Figure 16). Then, as in example 8, the distance between A and B is the
square root of the sum of the lengths of the sides.

Example 10.

What is the length of the longest line segment in a box of width 10”, length 16” and height 8”?

Length =
√

102 + 162 + 82 =
√

100 + 256 + 64 =
√

428 =
√

4 · 107 = 2
√

107

inches, or a little more that 20 inches.

Example 11.

In the movie Despicable Me, an inflatable model of The Great Pyramid of Giza in Egypt was created by
Vector to trick people into thinking that the actual pyramid had not been stolen. When inflated, the false
Great Pyramid had a square base of side length 100 m. and the height of one of the side triangles was
230 m. What is the volume of gas that was used to fully inflate the fake Pyramid?

100m

h

50m

230m

Figure 17

Solution. The situation is depicted in Figure 17. Now, we know that the formula for the volume
of a pyramid is 1

3 Bh, whee B is the area of the base and h is the height of the pyramid (the distance
from the base to the apex, denoted by h in the figure). Since the base is a square of side length 100
m., its area is 104 m2. To calculate the height, we observe (since the apex of the pyramid is directly
above the center of the base), that h is a leg of a right triangle whose other leg is 50 m. and whose
hypotenuse has length 230 m. By the Pythagorean theorem h2 + 502 = 2302. Calculating we find
h2 = 2302 − 502 = 52900 − 2500 = 50400. Taking square roots, we have h = 225 approximately. Then,
the volume of the pyramid is

Volume =
1
3

(104)(2.25 × 102) = .75 × 105 = 75, 000 m3.

Section 10.4 The Distance Between Two Points

Apply the Pythagorean theorem to find the distance between two points. 8G8.
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For any two points P and Q , the distance between P and Q is the length of the line segment PQ.

We can approximate the distance between two points by measuring with a ruler, and if we are looking at a scale
drawing, we will have to use the scale conversion. If the two points are on a coordinate plane, we can find the
distance between the points using the coordinates by applying the Pythagorean theorem. The following sequence
of examples demonstrates this method, starting with straight measurement.

Example 12.

a. Using a ruler, estimate the distance between each of the three points P, Q and R on Figure 18.

Solution. The measurements I get are PQ = 39 mm; PR = 39 mm and QR = 41 mm. Of course, the
actual measures one gets will depend upon the display of the figure.

b. Now measure the horizontal and vertical line segments (the dashed line segments in the figure),
to confirm the Pythagorean theorem.

Solution. The horizontal line is 30 mm, and the vertical line is 27 mm. Now 302 + 272 = 900 + 729 =

1629, and 392 = 1621. This approximate values are close enough to confirm the distance calculation,
and attribute the discrepancy to minor imprecision in measurement.

P

Q

R

Figure 18

Example 13.

In the accompanying map of the northeast United States, one inch represents 100 mies. Using a ruler
and the scale on the map, calculate the distance between

a. Pittsburgh and Providence

b. Providence and Concord

c. Pittsburgh and Concord

d. Now test whether or not the directions Providence→ Pittsburgh and Providence→ Concord are
at right angles.

Solution. After printing out the map, we measured the distances with a ruler, and found

a. Pittsburgh to Providence: Four and an eighth inches, or 412.5 miles;

b. Providence to Concord: 15/16 of an inch, or 93.75 miles;
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c. Pittsburg to Providence: Four and a quarter inches, or 425 miles.

d. Since we are only approximating these distances, we round to integer values and then check the
Pythagorean formula to see how close we come to have both sides equal Let us denote these
distances by the corresponding letters a, b, c, so that a = 413, b = 94, c = 425. We now
calculate the components of the Pythagorean formula:

a2 = 170, 569, b2 = 8, 836, so a2 + b2 = 179, 405 ; c2 = 180, 625 .

The error, 1220, is well within one percent of c2, so this angle can be taken to be a right angle.

Example 14.

On a coordinate plane, locate the points P(3, 2) and Q(7, 5) and estimate the distance between P and Q.
Now draw the horizontal line starting at P and the vertical line starting at Q and let R be the point of
intersection. Calculate the length of PQ using the Pythagorean theorem.

Solution. First of all, we know the coordinates for R: (7,2). So the length of PR is 4, and the length of
QR is 3. By the Pythagorean theorem, the length of PQ is

√
42 + 32 = 5. The measurement with ruler

should confirm that.

Example 15.

Find the distance between each pair of these three points on the coordinate plane: P(−3, 2), Q(7, 7) and
R(2,−4).

©2014 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.

8MF10-14



(−3, 2)

(2,−4)

(7, 7)

Figure 19

Solution. In Figure 19 have drawn the points and represented the line joining them by dotted lines. To
calculate the lengths of these line segments, we consider the right triangle with horizontal and vertical
legs and PQ as hypotenuse. The length of the horizontal leg is 7-(-3) = 10, and that of the vertical leg is
7-2 = 5. So

|PQ| =
√

102 + 52 =
√

52(22 + 1) = 5
√

5 .

For the other two lengths, use the slope triangles as shown and perform the same calculation:

|QR| =
√

112 + 52 =
√

121 + 25 =
√

146 ,

|PR| =
√

52 + 62 =
√

61 .

These examples show us that the distance between two points in the plane can be calculated using the Pythagorean
theorem, since the slope triangle with hypotenuse the line segment joining the two points is a right angle. This
can be stated as a formula, using symbols for the coordinates of the two points, but it is best if students understand
the protocol and the reasoning behind it, and by no means should memorize the formula. Nevertheless, for
completeness, here it is.

The Coordinate Distance Formula:

Given points P : (x0, y0), Q(x1, y1)

|PQ| =
√

(x1 − x0)2 + (y1 − y0)2 .

Example 16.

Figure 20 is a photograph, by Jan-Pieter Nap, of the Mount Bromo volcano on the island Java of In-
donesia taken on July 11 2004.

http://commons.wikimedia.org/wiki/File:Mahameru-volcano.jpeg
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Figure 20

From the bottom of the volcano (in our line of vision) to the top is 6000 feet. Given that information, by
measuring with a rule, find out how long the visible part of the left slope is, and how high the plume of
smoke is.

Solution. Using a ruler, we find that the height of the image of the volcano is 12 mm, the length of
the left slope is 21 mm, and the plume is 10 mm high. Now we are given the information that the visible
part of the volcano is 5000 feet, and that is represented in the image by 12 mm. Thus the scale of this
photo (at the volcano) is 12 mm : 6000 feet, or 1 mm : 500 feet. Then the slope is 21 × 500 = 10, 500
feet, and the plume is 10 × 500 = 5000 feet high.

Example 17.

12 f t

? f t

3 f t

Figure 21

In my backyard I plan to build a rectangular shed that is 12’ by 20’, with a peaked roof, as shown in
Figure 21. The peak of the roof is 3’ above the ceiling of the shed. How long do I have to cut the roof
beams?

Example 18.
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Figure 22 is a detailed map of part of the Highline Trail, courtesy of www.christine@lustik.com.

Using the scale, find the distance from Kings Peak to Deadhorse Pass as the crow flies. Now find the
length of the trail between these points. In both cases, just measure distances along horizontal and
vertical lens and use the Pythagorean theorem. Measuring with a ruler on the scale at the bottom, we

Figure 22

find that the scale is 20 mm : 5 km, or 4 mm/km. Measuring the distance from King’s Peak to Deadhorse
Pass, we get 108 mm. Then the actual distance in km is

(108 mm) ·
1 km
4 mm

= 27 km .

Now, to find the length of the trail, you will have to measure each straight length individually and add the
measurements. Alternatively, you can go to http://lustik.com/highline trail.htm and read an entertaining
account of the hike.

8MF10-17 ©2014 University of Utah Middle School Math Project in partnership with the
Utah State Office of Education. Licensed under Creative Commons, cc-by.


	Chapter 1: Linear Equations in One Variable
	Linear Expressions
	Section 1.1. Solving linear equations: obtaining the desired value of an expression
	Section 1.2. Solving linear equations: equating two expressions
	Section 1.3. Creating and Solving Linear Equations to Model Real World Problems


	8-2-Mathematical Foundations.pdf
	Chapter 2: Exploring Linear Relations
	2.1 Linear Patterns and Contexts
	Proportional Relationships
	Linear relationships

	Section 2.2. Slope of a Line
	Section 2.3. The Equation y = mx+b.


	8-3-Mathematical Foundations.pdf
	Chapter 3: Representations of a Linear Relation
	3.1 Linear relations: creating graphs, tables, equations of lines
	Section 3.2 Parallel and Perpendicular lines


	8-4-Mathematical Foundations.pdf
	Chapter 4: Simultaneous Linear Equations
	Section 4.1: Understanding Solutions of Simultaneous Linear Equations
	Section 4.2 Solving Simultaneous Linear Equations Algebraically 
	Method of Substitution
	Method of Elimination
	Comments
	Solving Real World Problems using Systems



	8-5-Mathematical Foundations.pdf
	Chapter 5: Functions
	5.1 What is a Function?
	Functions Defined by Graphs
	5.2. Linear and Nonlinear Functions
	5.3. Modeling and Analyzing a Functional Relationship
	Constructing Functions
	Analyzing a Functional Relationship



	8-6-Mathematical Foundations.pdf
	Chapter 6: Investigate Patterns of Association in Bivariate Data 
	Section 6.1: Construct and Interpret Scatter Plots for Bivariate Data
	Section 6.2 Linear Models for Problem Solving
	Construct and Assess Best Fitting Lines
	Using Linear Models to Solve Problems

	Section 6.3: Analyzing Bivariate Categorical Data Using Two-way Frequency Tables
	Two-Way Frequency Tables
	Making and Interpreting Two-Way Relative Frequency Tables



	8-7-Mathematical Foundations.pdf
	Chapter 7: and Irrational Numbers
	Section 7.1. Representing Numbers Geometrically
	Section 7.2 Solutions to Equations Using Square and Cube Roots
	Section 7.3. Rational and Irrational Numbers
	The Rational Number System
	Express Decimals as Fractions
	Expand the Number System
	Approximating the Value of Irrational Numbers



	8-8-Mathematical Foundations.pdf
	Chapter 8: Integer Exponents, Scientific Notation and Volume
	Section 8.1 Integer exponents
	Section 8.2 Scientific Notation
	Scientific Notation and Place Value
	Solve Problems and Apply Scientific Notation

	Section 8.3 Volume
	Prisms and Cylinders
	Cones
	The Sphere



	8-9-Mathematical Foundations.pdf
	Chapter 9: Geometry: Transformations, Congruence and Similarity 
	Section 9.1. Rigid motions and Congruence
	Rigid motions include
	Translations
	Properties of translations
	Reflections
	Properties of Reflections
	Rotations
	Properties of rotations
	Succession of rigid motions
	Properties of a succession of two rigid motions
	Congruence

	Section 9.2. Dilations and Similarity
	Properties of the dilation with center C and factor r
	Similarity
	Similar Figures
	Summary



	8-10-Mathematical Foundations.pdf
	Chapter 10: Geometry: Angles, Triangles and Distance
	Section 10.1 Angles and Triangles
	Section 10.2 The Pythagorean Theorem
	Section 10.3 Applications of the Pythagorean Theorem
	Section 10.4 The Distance Between Two Points





