Name \qquad

Surface Area Patterns

Find the surface area of the following cylinders:

$$
\text { Surface Area }=2 \pi r^{2}+2 \pi r h
$$

Set 1- Doubling

Cylinder 1
Cylinder 2

$\mathrm{r}=2 \mathrm{~cm}$.
$\mathrm{h}=3 \mathrm{~cm}$.
$\mathrm{r}=4 \mathrm{~cm}$.
$\mathrm{h}=6 \mathrm{~cm}$.
$\mathrm{r}=8 \mathrm{~cm}$
$\mathrm{h}=12 \mathrm{~cm}$.
$S=$
$S=$ \qquad
$S=$ \qquad

What pattern is produced in the surface area as the radius and height of the cylinders in Set 1 are doubled? Explain your answer. \qquad
What would the surface area be of a fourth cylinder in Set 1 ? \qquad

Set 2 - Tripling

Cylinder 1

Cylinder 2

$\mathrm{r}=6 \mathrm{~cm}$.
$\mathrm{h}=9 \mathrm{~cm}$.
$S=$ \qquad

$\mathrm{r}=18 \mathrm{~cm}$.
$\mathrm{h}=27 \mathrm{~cm}$.
$S=$ \qquad

What pattern is produced in the surface area as the radius and height of the cylinders in Set 2 are tripled? Explain your answer.

What would the surface area be of a fourth cylinder in Set 2? \qquad

