Strand BIO.3: GENETIC PATTERNS
Heredity is a unifying biological principle that explains how information is passed from parent to offspring through deoxyribonucleic acid (DNA) molecules in the form of chromosomes. Distinct sequences of DNA, called genes, carry the code for specific proteins, which are responsible for the specific traits and life functions of organisms. There are predictable patterns of inheritance; however, changes in the DNA sequence and environmental factors may alter genetic expression. The variation and distribution of traits observed in a population depend on both genetic and environmental factors. Research in the field of heredity has led to the development of multiple genetic technologies that may improve the quality of life but may also raise ethical issues.Standard BIO.3.2
Use computational thinking and patterns to make predictions about the expression of specific traits that are passed in genes on chromosomes from parents to offspring. Emphasize that various inheritance patterns can be predicted by observing the way genes are expressed. Examples of tools to make predictions could include Punnett squares, pedigrees, or karyotypes. Examples of allele crosses could include dominant/recessive, incomplete dominant, codominant, or sex-linked alleles. (LS3.A)