Strand ESS.3: SYSTEM INTERACTIONS: ATMOSPHERE, HYDROSPHERE, AND GEOSPHERE
The abundance of liquid water on Earth's surface and its unique properties are central to the planet's dynamics and system interactions. The foundation for Earth's global weather and climate systems is electromagnetic radiation from the Sun. The ocean exerts a major influence on weather and climate by absorbing energy from the Sun, releasing it over time, and globally redistributing it through ocean currents. Changes in the atmosphere due to human activity increase carbon dioxide concentrations and thus affect climate. Current scientific models predict that future average global temperatures will continue to rise, although regional climate changes will be complex and varied.Standard ESS.3.5
Develop and use a quantitative model to describe the cycling of carbon among Earth's systems. Emphasize each of Earth's systems (hydrosphere, atmosphere, geosphere, and biosphere) and how the movement of carbon from one system to another can result in changes to the system(s). Examples could include more carbon absorbed in the oceans leading to ocean acidification or more carbon present in the atmosphere leading to a stronger greenhouse effect. (LS2.B, ESS2.D, ESS3.D)