Science - 4th Grade
Course Preface
Printable Version (pdf)
Course Introduction
Introduction
Science is a way of knowing, a process for gaining knowledge and understanding
of the natural world. The Science Core Curriculum places emphasis on understanding
and using skills. Students should be active learners. It is not enough for students
to read about science; they must do science. They should observe, inquire, question,
formulate and test hypotheses, analyze data, report, and evaluate findings.
The students, as scientists, should have hands-on, active experiences throughout
the instruction of the science curriculum.
The Elementary Science Core describes what students should know and be able
to do at the end of each of the K-6 grade levels. It was developed, critiqued,
piloted, and revised by a community of Utah science teachers, university science
educators, State Office of Education specialists, scientists, expert national
consultants, and an advisory committee representing a wide variety of people
from the community. The Core reflects the current philosophy of science education
that is expressed in national documents developed by the American Association
for the Advancement of Science, the National Academies of Science. This Science
Core has the endorsement of the Utah Science Teachers Association. The Core
reflects high standards of achievement in science for all students.
Organization of the Elementary Science Core
The Core is designed to help teachers organize and deliver instruction.
The Science Core Curriculum's organization:
- Each grade level begins with a brief course description.
- The INTENDED LEARNING OUTCOMES (ILOs) describe the goals for science skills
and attitudes. They are found at the beginning of each grade, and are an integral
part of the Core that should be included as part of instruction.
- The SCIENCE BENCHMARKS describe the science content students should know.
Each grade level has three to five Science Benchmarks. The ILOs and Benchmarks
intersect in the Standards, Objectives and Indicators.
- A STANDARD is a broad statement of what students are expected to understand.
Several Objectives are listed under each Standard.
- An OBJECTIVE is a more focused description of what students need to know
and be able to do at the completion of instruction. If students have mastered
the Objectives associated with a given Standard, they are judged to have mastered
that Standard at that grade level. Several Indicators are described for each
Objective.
- An INDICATOR is a measurable or observable student action that enables one
to judge whether a student has mastered a particular Objective. Indicators
are not meant to be classroom activities, but they can help guide classroom
instruction.
Eight Guidelines Were Used in Developing the Elementary
Science Core
Reflects the Nature of Science: Science is a way
of knowing, a process of gaining knowledge and understanding of the natural
world. The Core is designed to produce an integrated set of Intended
Learning Outcomes (ILOs) for students. Please see the Intended Learning Outcomes
document for each grade level core.
As described in these ILOs, students will:
1. Use science process and thinking skills.
2. Manifest science interests and attitudes.
3. Understand important science concepts and principles.
4. Communicate effectively using science language and reasoning.
5. Demonstrate awareness of the social and historical aspects of science.
6. Understand the nature of science.
Coherent: The Core has been designed so that, wherever
possible, the science ideas taught within a particular grade level have a logical
and natural connection with each other and with those of earlier grades. Efforts
have also been made to select topics and skills that integrate well with one
another and with other subject areas appropriate to grade level. In addition,
there is an upward articulation of science concepts, skills, and content. This
spiraling is intended to prepare students to understand and use more complex
science concepts and skills as they advance through their science learning.
Developmentally Appropriate: The Core takes into
account the psychological and social readiness of students. It builds from concrete
experiences to more abstract understandings. The Core describes science language
students should use that is appropriate to each grade level. A more extensive
vocabulary should not be emphasized. In the past, many educators may have mistakenly
thought that students understood abstract concepts (such as the nature of the
atom), because they repeated appropriate names and vocabulary (such as electron
and neutron). The Core resists the temptation to tell about abstract concepts
at inappropriate grade levels, but focuses on providing experiences with concepts
that students can explore and understand in depth to build a foundation for
future science learning.
Encourages Good Teaching Practices: It is impossible
to accomplish the full intent of the Core by lecturing and having students read
from textbooks. The Elementary Science Core emphasizes student inquiry. Science
process skills are central in each standard. Good science encourages students
to gain knowledge by doing science: observing, questioning, exploring, making
and testing hypotheses, comparing predictions, evaluating data, and communicating
conclusions. The Core is designed to encourage instruction with students working
in cooperative groups. Instruction should connect lessons with students'
daily lives. The Core directs experiential science instruction for all students,
not just those who have traditionally succeeded in science classes.
Comprehensive: The Elementary Science Core does not
cover all topics that have traditionally been in the elementary science curriculum;
however, it does provide a comprehensive background in science. By emphasizing
depth rather than breadth, the Core seeks to empower students rather than intimidate
them with a collection of isolated and eminently forgettable facts. Teachers
are free to add related concepts and skills, but they are expected to teach
all the standards and objectives specified in the Core for their grade level.
Feasible: Teachers and others who are familiar with
Utah students, classrooms, teachers, and schools have designed the Core. It
can be taught with easily obtained resources and materials. A Teacher Resource
Book (TRB) is available for elementary grades and has sample lessons on each
topic for each grade level. The TRB is a document that will grow as teachers
add exemplary lessons aligned with the new Core. The middle grade levels have
electronic textbooks. View the 4th Grade Sci-ber Text.
Useful and Relevant: This curriculum relates directly
to student needs and interests. It is grounded in the natural world in which
we live. Relevance of science to other endeavors enables students to transfer
skills gained from science instruction into their other school subjects and
into their lives outside the classroom.
Encourages Good Assessment Practices: Student achievement
of the standards and objectives in this Core are best assessed using a variety
of assessment instruments. One's purpose should be clearly in mind as assessment
is planned and implemented. Performance tests are particularly appropriate to
evaluate student mastery of science processes and problem-solving skills. Teachers
should use a variety of classroom assessment approaches in conjunction with
standard assessment instruments to inform their instruction. Sample test items,
keyed to each Core Standard, may be located on the Utah Science Home Page. Observation
of students engaged in science activities is highly recommended as a way to
assess students' skills as well as attitudes in science. The nature of
the questions posed by students provides important evidence of students'
understanding of science.
The Most Important Goal
Elementary school reaches the greatest number of students for a longer period
of time during the most formative years of the school experience. Effective
elementary science instruction engages students actively in enjoyable learning
experiences. Science instruction should be as thrilling an experience for a
child as seeing a rainbow, growing a flower, or holding a toad. Science is not
just for those who have traditionally succeeded in the subject, and it is not
just for those who will choose science-related careers. In a world of rapidly
expanding knowledge and technology, all students must gain the skills they will
need to understand and function responsibly and successfully in the world. The
Core provides skills in a context that enables students to experience the joy
of doing science.
Fourth Grade Science Core Curriculum
The theme for the fourth grade Science Core curriculum is Utah natural
history. Students will learn about Utah environments including; weather, water
cycle, rocks, fossils, soils, plants and animals. Understanding the concepts
of cycles is an essential component of science literacy and is introduced at
this grade level. Emphasis should be placed on skills to classify many things.
Students should come to value and use science as a process of obtaining knowledge
based on observable evidence, and their curiosity should be encouraged and sustained
as they develop the abilities associated with inquiry in science.
Good science instruction requires that attention be paid to providing students
with hands-on science investigations in which student inquiry is an important
goal. Their curiosity should be encouraged and sustained. Teachers should provide
opportunities for all students to experience many things. Fourth graders should
feel the excitement of a rainstorm, hunt for fossils in rocks, observe the patterns
in a spider web, and teach their parents to recognize the song of the lark.
They should have many opportunities to observe and predict, to infer and to
classify. They should come to enjoy science as a process of learning about their
world.
Science Core concepts should be integrated with concepts and skills from other
curriculum areas. Reading, writing and mathematics skills should be emphasized
as integral to the instruction of
science. Technology issues and the nature of science are significant components
of this Core. Personal relevance of science in students' lives is always
an important part of helping students to
value science and should be emphasized at this grade-level.
This Core was designed using the American Association for the Advancement of
Science's Project 2061: Benchmarks For Science Literacy and the National
Academy of Science's National Science Education Standards as guides to
determine appropriate content and skills.
The fourth grade Science Core has online resources designed to help with
classroom instruction; they include Teacher Resource Book -a set of lesson
plans, assessment items and science information specific to fourth grade; the
Sci-ber Text -an electronic science text book specific to the Utah Core;
and the science test item pool. This pool includes multiple-choice questions,
performance tasks, and interpretive items aligned to the standards and objectives
of the fourth grade Science Core. These resources are all available on the Utah
Science Home Page. http://www.schools.utah.gov/curr/sci/
SAFETY PRECAUTIONS:
The hands-on nature of this science curriculum increases the need for teachers
to use appropriate precautions in the classroom and field. Teachers must adhere
to the published guidelines for the proper use of animals, equipment, and chemicals
in the classroom. These guidelines are available on the Utah Science Home Page.
Intended Learning Outcomes for Fourth Grade Science
The Intended Learning Outcomes (ILOs) describe the skills and attitudes students
should learn as a result of science instruction. They are an essential part
of the Science Core Curriculum and provide teachers with a standard for evaluation
of student learning in science. Instruction should include significant science
experiences that lead to student understanding using the ILOs.
The main intent of science instruction in Utah is that students
will value and use science as a process of obtaining knowledge based upon observable
evidence.
By the end of fourth grade students will be able to:
1. Use Science Process and Thinking Skills
- Observe simple objects and patterns and report their observations.
- Sort and sequence data according to a given criterion.
- Make simple predictions and inferences based upon observations.
- Compare things and events.
- Use instruments to measure length, temperature, volume, and weight using
appropriate units.
- Conduct a simple investigation when given directions.
- Develop and use simple classification systems.
- Use observations to construct a reasonable explanation.
2. Manifest Scientific Attitudes and Interests
- Demonstrate a sense of curiosity about nature.
- Voluntarily read or look at books and other materials about science.
- Pose questions about objects, events, and processes.
3. Understand Science Concepts and Principles
- Know science information specified for their grade level.
- Distinguish between examples and non-examples of science concepts taught.
- Explain science concepts and principles using their own words and explanations.
4. Communicate Effectively Using Science Language and Reasoning
- Record data accurately when given the appropriate form and format (e.g.,
table, graph, chart).
- Report observation with pictures, sentences, and models.
- Use scientific language appropriate to grade level in oral and written
communication.
- Use available reference sources to obtain information.
Core Standards of the Course
Science Benchmark
Matter on Earth cycles from one form to another. The cycling of matter on Earth requires energy. The cycling of water is an example of this process. The sun is the source of energy for the water cycle. Water changes state as it cycles between the atmosphere, land, and bodies of water on Earth.
Standard 1
Students will understand that water changes state as it moves through the water cycle.
Objective 1
Describe the relationship between heat energy, evaporation and condensation of water on Earth
-
Identify the relative amount and kind of water found in various locations on Earth (e.g., oceans have most of the water, glaciers and snowfields contain most fresh water).
-
Identify the sun as the source of energy that evaporates water from the surface of Earth.
-
Compare the processes of evaporation and condensation of water.
-
Investigate and record temperature data to show the effects of heat energy on changing the states of water.
Objective 2
Describe the water cycle.
-
Locate examples of evaporation and condensation in the water cycle (e.g., water evaporates when heated and clouds or dew forms when vapor is cooled).
-
Describe the processes of evaporation, condensation, and precipitation as they relate to the water cycle.
-
Identify locations that hold water as it passes through the water cycle (e.g., oceans, atmosphere, fresh surface water, snow, ice, and ground water).
-
Construct a model or diagram to show how water continuously moves through the water cycle over time.
-
Describe how the water cycle relates to the water supply in your community.
Language science students should use: vapor, precipitation, evaporation, clouds , dew, condensation, temperature, water cycle
Science Benchmark
Weather describes conditions in the atmosphere at a certain place and time. Water, energy from the sun, and wind create a cycle of changing weather. The sun's energy warms the oceans and lands at Earth's surface, creating changes in the atmosphere that cause the weather. The temperature and movement of air can be observed and measured to determine the effect on cloud formation and precipitation. Recording weather observations provides data that can be used to predict future weather conditions and establish patterns over time. Weather affects many aspects of people's lives.
Standard 2
Students will understand that the elements of weather can be observed, measured, and recorded to make predictions and determine simple weather patterns.
Objective 1
Observe, measure, and record the basic elements of weather.
-
Identify basic cloud types (i.e., cumulus, cirrus, stratus clouds).
-
Observe, measure, and record data on the basic elements of weather over a period of time (i.e., precipitation, air temperature, wind speed and direction, and air pressure).
-
Investigate evidence that air is a substance (e.g., takes up space, moves as wind, temperature can be measured).
-
Compare the components of severe weather phenomena to normal weather conditions (e.g., thunderstorm with lightning and high winds compared to rainstorm with rain showers and breezes).
Objective 2
Interpret recorded weather data for simple patterns.
-
Observe and record effects of air temperature on precipitation (e.g., below freezing results in snow, above freezing results in rain).
-
Graph recorded data to show daily and seasonal patterns in weather.
-
Infer relationships between wind and weather change (e.g., windy days often precede changes in the weather; south winds in Utah often precede a cold front coming from the north).
Objective 3
Evaluate weather predictions based upon observational data.
-
Identify and use the tools of a meteorologist (e.g., measure rainfall using rain gauge, measure air pressure using barometer, measure temperature using a thermometer).
-
Describe how weather and forecasts affect people's lives.
-
Predict weather and justify prediction with observable evidence.
-
Evaluate the accuracy of student and professional weather forecasts.
-
Relate weather forecast accuracy to evidence or tools used to make the forecast (e.g., feels like rain vs. barometer is dropping).
Language science students should use: atmosphere, meteorologist, freezing, cumulus, stratus, cirrus, air pressure, thermometer, air temperature, wind speed, forecast, severe, phenomena, precipitation, seasonal, accuracy, barometer, rain gauge, components
Science Benchmark
Earth materials include rocks, soils, water, and gases. Rock is composed of minerals. Earth materials change over time from one form to another. These changes require energy. Erosion is the movement of materials and weathering is the breakage of bedrock and larger rocks into smaller rocks and soil materials. Soil is continually being formed from weathered rock and plant remains. Soil contains many living organisms. Plants generally get water and minerals from soil.
Standard 3
Students will understand the basic properties of rocks, the processes involved in the formation of soils, and the needs of plants provided by soil.
Objective 1
Identify basic properties of minerals and rocks.
-
Describe the differences between minerals and rocks.
-
Observe rocks using a magnifying glass and draw shapes and colors of the minerals.
-
Sort rocks by appearance according to the three basic types: sedimentary, igneous and metamorphic (e.g., sedimentary-rounded-appearing mineral and rock particles that are cemented together, often in layers; igneous-with or without observable crystals that are not in layers or with or without air holes or glass like; metamorphic -crystals/minerals, often in layers).
-
Classify common rocks found in Utah as sedimentary (i.e., sandstone, conglomerate, shale), igneous (i.e., basalt, granite, obsidian, pumice) and metamorphic (i.e., marble, gneiss, schist).
Objective 2
Explain how the processes of weathering and erosion change and move materials that become soil.
-
Identify the processes of physical weathering that break down rocks at Earth's surface (i.e., water movement, freezing, plant growth, wind).
-
Distinguish between weathering (i.e., wearing down and breaking of rock surfaces) and erosion (i.e., the movement of materials).
-
Model erosion of Earth materials and collection of these materials as part of the process that leads to soil (e.g., water moving sand in a playground area and depositing this sand in another area).
-
Investigate layers of soil in the local area and predict the sources of the sand and rocks in the soil.
Objective 3
Observe the basic components of soil and relate the components to plant growth.
-
Observe and list the components of soil (i.e., minerals, rocks, air, water, living and dead organisms) and distinguish between the living, nonliving, and once living components of soil.
-
Diagram or model a soil profile showing topsoil, subsoil, and bedrock, and how the layers differ in composition.
-
Relate the components of soils to the growth of plants in soil (e.g., mineral nutrients, water).
-
Explain how plants may help control the erosion of soil.
-
Research and investigate ways to provide mineral nutrients for plants to grow without soil (e.g., grow plants in wet towels, grow plants in wet gravel, grow plants in water).
Language science students should use: mineral, weathering, erosion, sedimentary, igneous, metamorphic, topsoil, subsoil, bedrock, organism, freeze, thaw, profile, nonliving, structural support, nutrients
Science Benchmark
Fossils are evidence of living organisms from the past and are usually preserved in sedimentary rocks. A fossil may be an impression left in sediments, the preserved remains of an organism, or a trace mark showing that an organism once existed. Fossils are usually made from the hard parts of an organism because soft parts decay quickly. Fossils provide clues to Earth's history. They provide evidence that can be used to make inferences about past environments. Fossils can be compared to one another, to living organisms, and to organisms that lived long ago.
Standard 4
Students will understand how fossils are formed, where they may be found in Utah, and how they can be used to make inferences.
Objective 1
Describe Utah fossils and explain how they were formed.
-
Identify features of fossils that can be used to compare them to living organisms that are familiar (e.g., shape, size and structure of skeleton, patterns of leaves).
-
Describe three ways fossils are formed in sedimentary rock (i.e., preserved organisms, mineral replacement of organisms, impressions or tracks).
-
Research locations where fossils are found in Utah and construct a simple fossil map.
Objective 2
Explain how fossils can be used to make inferences about past life, climate, geology, and environments.
-
Explain why fossils are usually found in sedimentary rock.
-
Based on the fossils found in various locations, infer how Utah environments have changed over time (e.g., trilobite fossils indicate that Millard County was once covered by a large shallow ocean; dinosaur fossils and coal indicate that Emery and Uintah County were once tropical and swampy).
-
Research information on two scientific explanations for the extinction of dinosaurs and other prehistoric organisms.
-
Formulate questions that can be answered using information gathered on the extinction of dinosaurs.
Language science students should use: infer, environments, climate, dinosaur, preserved, extinct, extinction, impression, fossil, prehistoric, mineral, organism, replacement, trilobite, sedimentary, tropical
Science Benchmark
Utah has diverse plant and animal life that is adapted to and interacts in areas that can be described as wetlands, forests, and deserts. The characteristics of the wetlands, forests, and deserts influence which plants and animals survive best there. Living and nonliving things in these areas are classified based on physical features.
Standard 5
Students will understand the physical characteristics of Utah's wetlands, forests, and deserts and identify common organisms for each environment.
Objective 1
Describe the physical characteristics of Utah's wetlands, forests, and deserts.
-
Compare the physical characteristics (e.g., precipitation, temperature, and surface terrain) of Utah's wetlands, forests, and deserts.
-
Describe Utah's wetlands (e.g., river, lake, stream, and marsh areas where water is a major feature of the environment) forests (e.g., oak, pine, aspen, juniper areas where trees are a major feature of the environment), and deserts (e.g., areas where the lack of water provided an environment where plants needing little water are a major feature of the environment).
-
Locate examples of areas that have characteristics of wetlands, forests, or deserts in Utah.
-
Based upon information gathered, classify areas of Utah that are generally identified as wetlands, forests, or deserts.
-
Create models of wetlands, forests, and deserts.
Objective 2
Describe the common plants and animals found in Utah environments and how these organisms have adapted to the environment in which they live.
-
Identify common plants and animals that inhabit Utah's forests, wetlands, and deserts.
-
Cite examples of physical features that allow particular plants and animals to live in specific environments (e.g., duck has webbed feet, cactus has waxy coating).
-
Describe some of the interactions between animals and plants of a given environment (e.g., woodpecker eats insects that live on trees of a forest, brine shrimp of the Great Salt Lake eat algae and birds feed on brine shrimp).
-
Identify the effect elevation has on types of plants and animals that live in a specific wetland, forest, or desert.
-
Find examples of endangered Utah plants and animals and describe steps being taken to protect them.
Objective 3
Use a simple scheme to classify Utah plants and animals.
-
Explain how scientists use classification schemes.
-
Use a simple classification system to classify unfamiliar Utah plants or animals (e.g., fish/amphibians/reptile/bird/mammal, invertebrate/vertebrate, tree/shrub/grass, deciduous/conifers).
Objective 4
Observe and record the behavior of Utah animals.
-
Observe and record the behavior of birds (e.g., caring for young, obtaining food, surviving winter).
-
Describe how the behavior and adaptations of Utah mammals help them survive winter (e.g., obtaining food, building homes, hibernation, migration).
-
Research and report on the behavior of a species of Utah fish (e.g., feeding on the bottom or surface, time of year and movement of fish to spawn, types of food and how it is obtained).
-
Compare the structure and behavior of Utah amphibians and reptiles.
-
Use simple classification schemes to sort Utah's common insects and spiders.
Language science students should use: wetland, forest, desert, adaptation, deciduous, coniferous, invertebrate, vertebrate, bird, amphibian, reptile, fish, mammal, insect, hibernation, migration
Common plants: sagebrush, pinyon pine, Utah juniper, spruce, fir, oak brush, quaking aspen, cottonwood, cattail, bulrush, prickly pear cactus
Common animals: jackrabbit, cottontail rabbit, red fox, coyote, mule deer, elk, moose, cougar, bobcat, deer mouse, kangaroo rat, muskrat, beaver, gopher snake, rattlesnake, lizard, tortoise, frog, salamander, red–tailed hawk, barn owl, lark, robin, pinyon jay, magpie, crow, trout, catfish, carp, grasshopper, ant, moth, butterfly, housefly, bee, wasp, pill bug, millipede
http://www.uen.org - in partnership with Utah State Board of Education
(USBE) and Utah System of Higher Education
(USHE). Send questions or comments to USBE Specialist -
Jennifer Throndsen
and see the Science - Elementary website. For
general questions about Utah's Core Standards contact the Director
-
Jennifer
Throndsen .
These materials have been produced by and for the teachers of the
State of Utah. Copies of these materials may be freely reproduced
for teacher and classroom use. When distributing these materials,
credit should be given to Utah State Board of Education. These
materials may not be published, in whole or part, or in any other
format, without the written permission of the Utah State Board of
Education, 250 East 500 South, PO Box 144200, Salt Lake City, Utah
84114-4200.