Skip Navigation

Utah Core  •  Curriculum Search  •  All Science - Secondary Lesson Plans  •  USBE Science - Secondary website

 

Science - Secondary Curriculum SEEd - Grade 6
Printable Version Printable Version (pdf)

 

arrow icon Course Introduction

 

Core Standards of the Course

Strand 6.1: STRUCTURE AND MOTION WITHIN THE SOLAR SYSTEM
The solar system consists of the Sun, planets, and other objects within Sun's gravitational influence. Gravity is the force of attraction between masses. The Sun-Earth-Moon system provides an opportunity to study interactions between objects in the solar system that influence phenomena observed from Earth. Scientists use data from many sources to determine the scale and properties of objects in our solar system.

Standard 6.1.1
Develop and use a model of the Sun-Earth-Moon system to describe the cyclic patterns of lunar phases, eclipses of the Sun and Moon, and seasons. Examples of models could be physical, graphical, or conceptual. (ESS1.A, ESS1.B)

Button to show lessons.

Standard 6.1.2
Develop and use a model to describe the role of gravity and inertia in orbital motions of objects in our solar system. (ESS1.B)

Button to show lessons.

Standard 6.1.3
Use computational thinking to analyze data and determine the scale and properties of objects in the solar system. Examples of scale could include size and distance. Examples of properties could include layers, temperature, surface features, and orbital radius. Data sources could include Earth and space-based instruments such as telescopes and satellites. Types of data could include graphs, data tables, drawings, photographs, and models. (ESS1.A, ESS1.B)

Button to show lessons.

Strand 6.2: ENERGY AFFECTS MATTER
Matter and energy are fundamental components of the universe. Matter is anything that has mass and takes up space. Transfer of energy creates change in matter. Changes between general states of matter can occur through the transfer of energy. Density describes how closely matter is packed together. Substances with a higher density have more matter in a given space than substances with a lower density. Changes in heat energy can alter the density of a material. Insulators resist the transfer of heat energy, while conductors easily transfer heat energy. These differences in energy flow can be used to design products to meet the needs of society.

Standard 6.2.1
Develop models to show that molecules are made of different kinds, proportions and quantities of atoms. Emphasize understanding that there are differences between atoms and molecules, and that certain combinations of atoms form specific molecules. Examples of simple molecules could include water (H2O), atmospheric oxygen (O2), and carbon dioxide (CO2). (PS1.A)

Button to show lessons.

Standard 6.2.2
Develop a model to predict the effect of heat energy on states of matter and density. Emphasize the arrangement of particles in states of matter (solid, liquid, or gas) and during phase changes (melting, freezing, condensing, and evaporating). (PS1.A, PS3.A)

Button to show lessons.

Standard 6.2.3
Plan and carry out an investigation to determine the relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and evaluating data, and communicating the results of the investigation. (PS3.A)

Button to show lessons.

Standard 6.2.4
Design an object, tool, or process that minimizes or maximizes heat energy transfer. Identify criteria and constraints, develop a prototype for iterative testing, analyze data from testing, and propose modifications for optimizing the design solution. Emphasize demonstrating how the structure of differing materials allows them to function as either conductors or insulators. (PS3.A, PS3.B, ETS1.A, ETS1.B, ETS1.C)

Button to show lessons.

Strand 6.3: EARTH'S WEATHER PATTERNS AND CLIMATE
All Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. Heat energy from the Sun, transmitted by radiation, is the primary source of energy that affects Earth's weather and drives the water cycle. Uneven heating across Earth's surface causes changes in density, which result in convection currents in water and air, creating patterns of atmospheric and oceanic circulation that determine regional and global climates.

Standard 6.3.1
Develop a model to describe how the cycling of water through Earth's systems is driven by energy from the Sun, gravitational forces, and density. (ESS2.C)

Button to show lessons.

Standard 6.3.2
Investigate the interactions between air masses that cause changes in weather conditions. Collect and analyze weather data to provide evidence for how air masses flow from regions of high pressure to low pressure causing a change in weather. Examples of data collection could include field observations, laboratory experiments, weather maps, or diagrams. (ESS2.C, ESS2.D)

Button to show lessons.

Standard 6.3.3
Develop and use a model to show how unequal heating of Earth's systems cause patterns of atmospheric and oceanic circulation that determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah regional patterns such as lake-effect and wintertime temperature inversions. (ESS2.C, ESS2.D)

Button to show lessons.

Standard 6.3.4
Construct an explanation supported by evidence for the role of the natural greenhouse effect in Earth's energy balance, and how it enables life to exist on Earth. Examples could include comparisons between Earth and other planets such as Venus and Mars. (ESS2.D)

Button to show lessons.

Strand 6.4: STABILITY AND CHANGE IN ECOSYSTEMS
The study of ecosystems includes the interaction of organisms with each other and with the physical environment. Consistent interactions occur within and between species in various ecosystems as organisms obtain resources, change the environment, and are affected by the environment. This influences the flow of energy through an ecosystem, resulting in system variations. Additionally, ecosystems benefit humans through processes and resources, such as the production of food, water and air purification, and recreation opportunities. Scientists and engineers investigate interactions among organisms and evaluate design solutions to preserve biodiversity and ecosystem resources.

Standard 6.4.1
Analyze data to provide evidence for the effects of resource availability on organisms and populations in an ecosystem. Ask questions to predict how changes in resource availability affects organisms in those ecosystems. Examples could include water, food, and living space in Utah environments. (LS2.A)

Button to show lessons.

Standard 6.4.2
Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. Emphasize consistent interactions in different environments such as competition, predation, and mutualism. (LS2.A)

Button to show lessons.

Standard 6.4.3
Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. Emphasize food webs and the role of producers, consumers, and decomposers in various ecosystems. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts. (LS2.B)

Button to show lessons.

Standard 6.4.4
Construct an argument supported by evidence that the stability of populations is affected by changes to an ecosystem. Emphasize how changes to living and nonliving components in an ecosystem affect populations in that ecosystem. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts. (LS2.C)

Button to show lessons.

Standard 6.4.5
Evaluate competing design solutions for preserving ecosystem resources and biodiversity based on how well the solutions maintain stability within the ecosystem. Emphasize obtaining, evaluating and communicating information of differing design solutions. Examples could include policies affecting ecosystems, responding to invasive species or solutions for the preservation of ecosystem resources specific to Utah, such as air and water quality and prevention of soil erosion. (LS2.C, LS4.D, ETS1.A, ETS1.B, ETS1.C)

Button to show lessons.


UEN logo http://www.uen.org - in partnership with Utah State Board of Education (USBE) and Utah System of Higher Education (USHE).  Send questions or comments to USBE Specialist - Milo  Maughan and see the Science - Secondary website. For general questions about Utah's Core Standards contact the Director - Jennifer  Throndsen.

These materials have been produced by and for the teachers of the State of Utah. Copies of these materials may be freely reproduced for teacher and classroom use. When distributing these materials, credit should be given to Utah State Board of Education. These materials may not be published, in whole or part, or in any other format, without the written permission of the Utah State Board of Education, 250 East 500 South, PO Box 144200, Salt Lake City, Utah 84114-4200.